Rapid Detection of Bacterial Resistance to β-Lactam Antibiotics with a Relay-Response Chemiluminescence Assay.

Autor: Ma Z; State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China., Liu R; State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China., Wang J; State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China., Yu T; State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China., Zou Y; State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China., Chen F; State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China., Cui C; State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China., Yang H; Clinical Laboratory, Quanzhou Maternity and Children's Hospital, 700 Fengze Street, Quanzhou, Fujian 362000, China., Xie H; State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.
Jazyk: angličtina
Zdroj: ACS infectious diseases [ACS Infect Dis] 2024 Jun 14; Vol. 10 (6), pp. 1970-1979. Date of Electronic Publication: 2024 May 31.
DOI: 10.1021/acsinfecdis.3c00682
Abstrakt: Bacterial resistance caused by β-lactamases has been a major threat to public health around the world, seriously weakening the efficacy of β-lactam antibiotics, the most widely used therapeutic agents against infectious diseases. To detect the bacterial resistance to β-lactam antibiotics, particularly specific type of β-lactam antibiotics, in a rapid manner, we report herein a relay-response chemiluminescence assay. This assay mainly consists of two reagents: a β-lactam-caged thiophenol and a thiophenol-sensitive chemiluminescence reporter, both of which are synthetically feasible. The selective hydrolysis of β-lactam by β-lactamase leads to the releasing of free thiophenol, which then triggers the emission of a chemiluminescence signal in a relay manner. Three thiophenol-caged β-lactams, structural analogues of cephalothin, cefotaxime, and meropenem, respectively, have been synthesized. And the application of this assay with these analogues of β-lactam antibiotics allows fast detection of β-lactamase-expressing resistant bacteria and, more impressively, provides detailed information on the resistant scope of bacteria.
Databáze: MEDLINE