CuO Nanozymes Catalyze Cysteine and Glutathione Depletion Induced Ferroptosis and Cuproptosis for Synergistic Tumor Therapy.
Autor: | Bai J; State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China., Zhang X; State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China., Zhao Z; State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China., Sun S; State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China., Cheng W; State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China., Yu H; State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China., Chang X; State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China., Wang B; State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China. |
---|---|
Jazyk: | angličtina |
Zdroj: | Small (Weinheim an der Bergstrasse, Germany) [Small] 2024 Oct; Vol. 20 (40), pp. e2400326. Date of Electronic Publication: 2024 May 30. |
DOI: | 10.1002/smll.202400326 |
Abstrakt: | The latest research identifies that cysteine (Cys) is one of the key factors in tumor proliferation, metastasis, and recurrence. The direct depletion of intracellular Cys shows a profound antitumor effect. However, using nanozymes to efficiently deplete Cys for tumor therapy has not yet attracted widespread attention. Here, a (3-carboxypropyl) triphenylphosphonium bromide-derived hyaluronic acid-modified copper oxide nanorods (denoted as MitCuOHA) are designed with cysteine oxidase-like, glutathione oxidase-like and peroxidase-like activities to realize Cys depletion and further induce cellular ferroptosis and cuproptosis for synergistic tumor therapy. MitCuOHA nanozymes can efficiently catalyze the depletion of Cys and glutathione (GSH), accompanied by the generation of H (© 2024 Wiley‐VCH GmbH.) |
Databáze: | MEDLINE |
Externí odkaz: |