Release dynamics of nanodiamonds created by laser-driven shock-compression of polyethylene terephthalate.
Autor: | Heuser B; Institut für Physik, Universität Rostock, Albert-Einstein-Str. 23-24, 18059, Rostock, Germany. benjamin.heuser@uni-rostock.de.; Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiation Physics, Dresden, 01328, Germany. benjamin.heuser@uni-rostock.de., Bergermann A; Institut für Physik, Universität Rostock, Albert-Einstein-Str. 23-24, 18059, Rostock, Germany., Stevenson MG; Institut für Physik, Universität Rostock, Albert-Einstein-Str. 23-24, 18059, Rostock, Germany., Ranjan D; Institut für Physik, Universität Rostock, Albert-Einstein-Str. 23-24, 18059, Rostock, Germany.; Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiation Physics, Dresden, 01328, Germany., He Z; Institut für Physik, Universität Rostock, Albert-Einstein-Str. 23-24, 18059, Rostock, Germany.; China Academy of Engineering Physics, Shanghai Institute of Laser Plasma, Shanghai, 201800, China., Lütgert J; Institut für Physik, Universität Rostock, Albert-Einstein-Str. 23-24, 18059, Rostock, Germany., Schumacher S; Institut für Physik, Universität Rostock, Albert-Einstein-Str. 23-24, 18059, Rostock, Germany., Bethkenhagen M; LULI, CNRS, CEA, Ecole Polytechnique-Institut Polytechnique de Paris, Sorbonne Université, Palaiseau, 91128, France., Descamps A; School of Mathematics and Physics, Queen's University Belfast, Belfast, Northern Ireland, BT7 1NN, UK., Galtier E; SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA., Gleason AE; SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA., Khaghani D; SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA., Glenn GD; SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA.; Stanford University, Stanford, CA, 94305, USA., Cunningham EF; SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA., Glenzer SH; SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA., Hartley NJ; SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA., Hernandez JA; European Synchrotron Radiation Facility, 71 avenue des Martyrs, CS 40220, 38043, Grenoble, France.; The Centre for Earth Evolution and Dynamics (CEED), University of Oslo, Oslo, 0371, Norway., Humphries OS; Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiation Physics, Dresden, 01328, Germany.; European XFEL, Schenefeld, 22869, Germany., Katagiri K; Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA., Lee HJ; SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA., McBride EE; School of Mathematics and Physics, Queen's University Belfast, Belfast, Northern Ireland, BT7 1NN, UK., Miyanishi K; RIKEN SPring-8 Center, Hyogo, 679-5148, Japan., Nagler B; SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA., Ofori-Okai B; SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA., Ozaki N; Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan.; Photon Pioneers Center, Osaka University, Suita, Osaka, 565-0087, Japan., Pandolfi S; SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA.; Sorbonne Université, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, Muséum National d'Histoire Naturelle, UMR CNRS 7590, 75005, Paris, France., Qu C; Institut für Physik, Universität Rostock, Albert-Einstein-Str. 23-24, 18059, Rostock, Germany., May PT; Institut für Physik, Universität Rostock, Albert-Einstein-Str. 23-24, 18059, Rostock, Germany., Redmer R; Institut für Physik, Universität Rostock, Albert-Einstein-Str. 23-24, 18059, Rostock, Germany., Schoenwaelder C; SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA., Sueda K; RIKEN SPring-8 Center, Hyogo, 679-5148, Japan., Yabuuchi T; RIKEN SPring-8 Center, Hyogo, 679-5148, Japan.; Japan Synchrotron Radiation Research Institute (JASRI), Hyogo, 679-5198, Japan., Yabashi M; RIKEN SPring-8 Center, Hyogo, 679-5148, Japan.; Japan Synchrotron Radiation Research Institute (JASRI), Hyogo, 679-5198, Japan., Lukic B; European Synchrotron Radiation Facility, 71 avenue des Martyrs, CS 40220, 38043, Grenoble, France., Rack A; European Synchrotron Radiation Facility, 71 avenue des Martyrs, CS 40220, 38043, Grenoble, France., Zinta LMV; Institut für Physik, Universität Rostock, Albert-Einstein-Str. 23-24, 18059, Rostock, Germany., Vinci T; LULI, CNRS, CEA, Ecole Polytechnique-Institut Polytechnique de Paris, Sorbonne Université, Palaiseau, 91128, France., Benuzzi-Mounaix A; LULI, CNRS, CEA, Ecole Polytechnique-Institut Polytechnique de Paris, Sorbonne Université, Palaiseau, 91128, France., Ravasio A; LULI, CNRS, CEA, Ecole Polytechnique-Institut Polytechnique de Paris, Sorbonne Université, Palaiseau, 91128, France., Kraus D; Institut für Physik, Universität Rostock, Albert-Einstein-Str. 23-24, 18059, Rostock, Germany.; Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiation Physics, Dresden, 01328, Germany. |
---|---|
Jazyk: | angličtina |
Zdroj: | Scientific reports [Sci Rep] 2024 May 28; Vol. 14 (1), pp. 12239. Date of Electronic Publication: 2024 May 28. |
DOI: | 10.1038/s41598-024-62367-7 |
Abstrakt: | Laser-driven dynamic compression experiments of plastic materials have found surprisingly fast formation of nanodiamonds (ND) via X-ray probing. This mechanism is relevant for planetary models, but could also open efficient synthesis routes for tailored NDs. We investigate the release mechanics of compressed NDs by molecular dynamics simulation of the isotropic expansion of finite size diamond from different P-T states. Analysing the structural integrity along different release paths via molecular dynamic simulations, we found substantial disintegration rates upon shock release, increasing with the on-Hugnoiot shock temperature. We also find that recrystallization can occur after the expansion and hence during the release, depending on subsequent cooling mechanisms. Our study suggests higher ND recovery rates from off-Hugoniot states, e.g., via double-shocks, due to faster cooling. Laser-driven shock compression experiments of polyethylene terephthalate (PET) samples with in situ X-ray probing at the simulated conditions found diamond signal that persists up to 11 ns after breakout. In the diffraction pattern, we observed peak shifts, which we attribute to thermal expansion of the NDs and thus a total release of pressure, which indicates the stability of the released NDs. (© 2024. The Author(s).) |
Databáze: | MEDLINE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |