Autor: |
Quintero V; Grupo de Investigación en Tecnologías de Valorización de Residuos y Fuentes Agrícolas e Industriales para la Sustentabilidad Energética (INTERFASE), Escuela de Ingeniería Química, Universidad Industrial de Santander, Cra. 27 N°9, Bucaramanga 680002, Colombia., Osma JF; BioAgro Center, Innovation and Technology Inc., Guasca 251217, Colombia., Azimov U; Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne NE1 8ST, UK., Nabarlatz D; Grupo de Investigación en Tecnologías de Valorización de Residuos y Fuentes Agrícolas e Industriales para la Sustentabilidad Energética (INTERFASE), Escuela de Ingeniería Química, Universidad Industrial de Santander, Cra. 27 N°9, Bucaramanga 680002, Colombia. |
Jazyk: |
angličtina |
Zdroj: |
Membranes [Membranes (Basel)] 2024 May 08; Vol. 14 (5). Date of Electronic Publication: 2024 May 08. |
DOI: |
10.3390/membranes14050108 |
Abstrakt: |
Agricultural and animal farming practices contribute significantly to greenhouse gas (GHG) emissions such as NH 3 , CH 4 , CO 2 , and NO x , causing local environmental concerns involving health risks and water/air pollution. A growing need to capture these pollutants is leading to the development of new strategies, including the use of solid adsorbents. However, commonly used adsorbent materials often pose toxicity and negative long-term environmental effects. This study aimed to develop responsive eco-friendly cryogels using xylan extracted from coffee parchment, a typical residue from coffee production. The crosslinking in cryogels was accomplished by "freeze-thawing" and subsequent freeze-drying. Cryogels were characterized in terms of morphology by using scanning electron microscopy, porosity, and density by the liquid saturation method and also moisture adsorption and ammonia adsorption capacity. The analysis showed that the porosity in the cryogels remained around 0.62-0.42, while the apparent densities varied from 0.14 g/cm 3 to 0.25 g/cm 3 . The moisture adsorption capacity was the highest at the highest relative humidity level (80%), reaching 0.25-0.43 g of water per gram of sample; the amount of water adsorbed increased when the xylan content in the cryogel increased up to 10% w / v , which was consistent with the hygroscopic nature of xylan. The ammonia adsorption process was modeled accurately by a pseudo-second-order equation, where the maximum adsorption capacity in equilibrium reached 0.047 mg NH 3 /g when xylan reached 10% w / v in cryogels, indicating a chemisorption process. The cryogels under investigation hold promise for ammonia adsorption applications and GHG separation, offering a sustainable alternative for gas-capturing processes. |
Databáze: |
MEDLINE |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|