Bacterial metabolism-triggered-chemiluminescence-based point-of-care testing platform for sensitive detection and photothermal inactivation of Staphylococcus aureus.

Autor: Yu X; School of Medicine, Nankai University, Tianjin, 300192, China; Key laboratory of Transplantation, Chinese Academy of Medical Sciences, Tianjin, 300192, China; Tianjin Key Laboratory for Organ Transplantation, Tianjin First Center Hospital, Tianjin, 300192, China; Tianjin Key Laboratory of Molecular and Treatment of Liver Cancer, Tianjin First Center Hospital, Tianjin, 300192, China., Ma Y; School of Medicine, Nankai University, Tianjin, 300192, China; Key laboratory of Transplantation, Chinese Academy of Medical Sciences, Tianjin, 300192, China; Tianjin Key Laboratory for Organ Transplantation, Tianjin First Center Hospital, Tianjin, 300192, China; Tianjin Key Laboratory of Molecular and Treatment of Liver Cancer, Tianjin First Center Hospital, Tianjin, 300192, China., Liu S; Key laboratory of Transplantation, Chinese Academy of Medical Sciences, Tianjin, 300192, China; Tianjin Key Laboratory for Organ Transplantation, Tianjin First Center Hospital, Tianjin, 300192, China; Department of Liver Transplantation, Tianjin Medical University First Center Clinical College, Tianjin, 300192, China; Tianjin Key Laboratory of Molecular and Treatment of Liver Cancer, Tianjin First Center Hospital, Tianjin, 300192, China., Qi C; School of Medicine, Nankai University, Tianjin, 300192, China; Tianjin Key Laboratory of Molecular and Treatment of Liver Cancer, Tianjin First Center Hospital, Tianjin, 300192, China., Zhang W; School of Medicine, Nankai University, Tianjin, 300192, China; Key laboratory of Transplantation, Chinese Academy of Medical Sciences, Tianjin, 300192, China; Tianjin Key Laboratory for Organ Transplantation, Tianjin First Center Hospital, Tianjin, 300192, China; Tianjin Key Laboratory of Molecular and Treatment of Liver Cancer, Tianjin First Center Hospital, Tianjin, 300192, China., Xiang W; School of Medicine, Nankai University, Tianjin, 300192, China; Key laboratory of Transplantation, Chinese Academy of Medical Sciences, Tianjin, 300192, China; Tianjin Key Laboratory for Organ Transplantation, Tianjin First Center Hospital, Tianjin, 300192, China; Tianjin Key Laboratory of Molecular and Treatment of Liver Cancer, Tianjin First Center Hospital, Tianjin, 300192, China., Li Z; School of Medicine, Nankai University, Tianjin, 300192, China; Key laboratory of Transplantation, Chinese Academy of Medical Sciences, Tianjin, 300192, China; Tianjin Key Laboratory for Organ Transplantation, Tianjin First Center Hospital, Tianjin, 300192, China; Tianjin Key Laboratory of Molecular and Treatment of Liver Cancer, Tianjin First Center Hospital, Tianjin, 300192, China., Yang K; Key laboratory of Transplantation, Chinese Academy of Medical Sciences, Tianjin, 300192, China; Tianjin Key Laboratory for Organ Transplantation, Tianjin First Center Hospital, Tianjin, 300192, China; Department of Liver Transplantation, Tianjin Medical University First Center Clinical College, Tianjin, 300192, China; Tianjin Key Laboratory of Molecular and Treatment of Liver Cancer, Tianjin First Center Hospital, Tianjin, 300192, China., Duan S; Key laboratory of Transplantation, Chinese Academy of Medical Sciences, Tianjin, 300192, China; Tianjin Key Laboratory for Organ Transplantation, Tianjin First Center Hospital, Tianjin, 300192, China; Department of Liver Transplantation, Tianjin Medical University First Center Clinical College, Tianjin, 300192, China; Tianjin Key Laboratory of Molecular and Treatment of Liver Cancer, Tianjin First Center Hospital, Tianjin, 300192, China., Du X; Key laboratory of Transplantation, Chinese Academy of Medical Sciences, Tianjin, 300192, China; Tianjin Key Laboratory for Organ Transplantation, Tianjin First Center Hospital, Tianjin, 300192, China; Department of Liver Transplantation, Tianjin Medical University First Center Clinical College, Tianjin, 300192, China; Tianjin Key Laboratory of Molecular and Treatment of Liver Cancer, Tianjin First Center Hospital, Tianjin, 300192, China., Yu J; Key laboratory of Transplantation, Chinese Academy of Medical Sciences, Tianjin, 300192, China; Tianjin Key Laboratory for Organ Transplantation, Tianjin First Center Hospital, Tianjin, 300192, China; Department of Liver Transplantation, Tianjin Medical University First Center Clinical College, Tianjin, 300192, China; Tianjin Key Laboratory of Molecular and Treatment of Liver Cancer, Tianjin First Center Hospital, Tianjin, 300192, China., Xie Y; Key laboratory of Transplantation, Chinese Academy of Medical Sciences, Tianjin, 300192, China; Tianjin Key Laboratory for Organ Transplantation, Tianjin First Center Hospital, Tianjin, 300192, China; Department of Liver Transplantation, Tianjin First Central Hospital, Tianjin, 300192, China; Tianjin Key Laboratory of Molecular and Treatment of Liver Cancer, Tianjin First Center Hospital, Tianjin, 300192, China., Wang Z; Tianjin Sprite Biological Technology, Tianjin, 300021, China., Jiang W; Key laboratory of Transplantation, Chinese Academy of Medical Sciences, Tianjin, 300192, China; Tianjin Key Laboratory for Organ Transplantation, Tianjin First Center Hospital, Tianjin, 300192, China; Department of Liver Transplantation, Tianjin First Central Hospital, Tianjin, 300192, China; Tianjin Key Laboratory of Molecular and Treatment of Liver Cancer, Tianjin First Center Hospital, Tianjin, 300192, China. Electronic address: jwt001@163.com., Zhang L; Key laboratory of Transplantation, Chinese Academy of Medical Sciences, Tianjin, 300192, China; Tianjin Key Laboratory for Organ Transplantation, Tianjin First Center Hospital, Tianjin, 300192, China; Department of Liver Transplantation, Tianjin First Central Hospital, Tianjin, 300192, China; Tianjin Key Laboratory of Molecular and Treatment of Liver Cancer, Tianjin First Center Hospital, Tianjin, 300192, China. Electronic address: tjzhli@126.com., Lin X; University of Macau Zhuhai UM Science & Technology Research Institute, Zhuhai, 519000, China. Electronic address: lxdlxf2011@163.com.
Jazyk: angličtina
Zdroj: Analytica chimica acta [Anal Chim Acta] 2023 Nov 15; Vol. 1281, pp. 341899. Date of Electronic Publication: 2023 Oct 10.
DOI: 10.1016/j.aca.2023.341899
Abstrakt: Post-operative pathogenic infections in liver transplantation seriously threaten human health. It is essential to develop novel methods for the highly sensitive and rapid detection of Staphylococcus aureus (S. aureus). Interestingly, the combination of the property of bacteria to secrete hydrogen peroxidase, bacterial metabolism-triggered-chemiluminescence (CL)-based bioassays can be as a candidate point-of-care testing (POCT) for the detection of S. aureus against the CL substrate Luminol and hydrogen peroxide without excitation light sources. Here, a CL-based strategy with stable and visualized CL intensity was fabricated according to a hybrid biomimetic enzyme of copper-Hemin metal-organic framework, which enhances the biological enzyme activity while improving the stability and sensitivity of the assay. By further integrating S. aureus-specific capture and one-step separation of the antibody-modified Fe 3 O 4 NPs (Fe 3 O 4 NPs@Ab), the portable device integrated smartphone enables CL-based POCT for specific detection of S. aureus in the range of 10 1 -10 6  CFU/mL with a limit of detection as low as 1 CFU/mL. Specifically, S. aureus can be eliminated after detection with high antibacterial efficiency due to the excellent photothermal properties of Fe 3 O 4 NPs@Ab. The developed multifunctional platform has the advantages of simplicity of operation and low cost, indicating great potential in clinical applications.
Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
(Copyright © 2023 Elsevier B.V. All rights reserved.)
Databáze: MEDLINE