Characterization of the aroma-active compounds in Xiaokeng green tea by three pretreatment methods combined with gas chromatography-olfactometry (GC-O).
Autor: | Gan S; State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, People's Republic of China; Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, Hefei 230036, People's Republic of China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, People's Republic of China., Chen Y; State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, People's Republic of China; Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, Hefei 230036, People's Republic of China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, People's Republic of China., Zhao L; State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, People's Republic of China; Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, Hefei 230036, People's Republic of China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, People's Republic of China., Zhao X; State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, People's Republic of China; Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, Hefei 230036, People's Republic of China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, People's Republic of China., Qiu T; State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, People's Republic of China; Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, Hefei 230036, People's Republic of China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, People's Republic of China., Zhai X; State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, People's Republic of China; Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, Hefei 230036, People's Republic of China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, People's Republic of China. Electronic address: xiaotingzhai@ahau.edu.cn., Dai Q; State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, People's Republic of China; Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, Hefei 230036, People's Republic of China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, People's Republic of China. Electronic address: daiqianying@ahau.edu.cn. |
---|---|
Jazyk: | angličtina |
Zdroj: | Food research international (Ottawa, Ont.) [Food Res Int] 2024 Jul; Vol. 187, pp. 114359. Date of Electronic Publication: 2024 Apr 20. |
DOI: | 10.1016/j.foodres.2024.114359 |
Abstrakt: | Chinese Xiaokeng green tea (XKGT) possesses elegant and fascinating aroma characteristics, but its key odorants are still unknown. In this study, 124 volatile compounds in the XKGT infusion were identified by headspace-solid phase microextraction (HS-SPME), stir bar sorptive extraction (SBSE), and solvent extraction-solid phase extraction (SE-SPE) combined with gas chromatography-mass spectrometry (GC-MS). Comparing these three pretreatments, we found HS-SPME was more efficient for headspace compounds while SE-SPE was more efficient for volatiles with higher boiling points. Furthermore, SBSE showed more sensitive to capture ketones then was effective to the application of pretreatment of aroma analysis in green tea. The aroma intensities (AIs) were further identified by gas chromatography-olfactometry (GC-O). According to the AI and relative odor activity value (rOAV), 27 compounds were identified as aroma-active compounds. Quantitative descriptive analysis (QDA) showed that the characteristic aroma attributes of XKGT were chestnut-like, corn-like, fresh, and so on. The results of network analysis showed that (E, Z)-2,6-nonadienal, nonanal, octanal and nerolidol were responsible for the fresh aroma. Similarly, dimethyl sulfide, (E, E)-2,4-heptadienal, (E)-2-octenal and β-cyclocitral contributed to the corn-like aroma. Furthermore, indole was responsible for the chestnut-like and soybean-like aroma. This study contributes to a better understanding of the molecular mechanism of the aroma characteristics of XKGT. Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. (Copyright © 2024. Published by Elsevier Ltd.) |
Databáze: | MEDLINE |
Externí odkaz: |