Mitochondrial antiviral signaling protein enhances MASLD progression through the ERK/TNFα/NFκβ pathway.
Autor: | Nóvoa E; Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain.; CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), A Coruña, Spain., da Silva Lima N; Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain., Gonzalez-Rellan MJ; Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain., Chantada-Vazquez MDP; Proteomic Unit, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, A Coruña, Spain., Verheij J; Department of Pathology, Amsterdam University Medical Center, Amsterdam, The Netherlands., Rodriguez A; CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), A Coruña, Spain.; Department of Endocrinology & Nutrition, Metabolic Research Laboratory, Clínica Universidad de Navarra, University of Navarra, IdiSNA, Navarra, Spain., Esquinas-Roman EM; Gene Regulatory Control in Disease Laboratory, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), University of Santiago de Compostela, Santiago de Compostela, A Coruña, Spain., Fondevila MF; Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain., Koning M; Department of Pathology, Amsterdam University Medical Center, Amsterdam, The Netherlands., Fernandez U; Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain.; CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), A Coruña, Spain., Cabaleiro A; Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain., Parracho T; Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain., Iglesias-Moure J; Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain., Seoane S; Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain., Porteiro B; Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain., Escudero A; Gene Regulatory Control in Disease Laboratory, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), University of Santiago de Compostela, Santiago de Compostela, A Coruña, Spain., Senra A; Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain., Perez-Fernandez R; Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain., López M; Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain.; CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), A Coruña, Spain., Fidalgo M; Gene Regulatory Control in Disease Laboratory, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), University of Santiago de Compostela, Santiago de Compostela, A Coruña, Spain., Guallar D; Gene Regulatory Control in Disease Laboratory, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), University of Santiago de Compostela, Santiago de Compostela, A Coruña, Spain., Martinez-Chantar ML; Liver Disease Lab, BRTA CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Derio, Bizkaia, Spain., Dieguez C; Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain.; Department of Endocrinology & Nutrition, Metabolic Research Laboratory, Clínica Universidad de Navarra, University of Navarra, IdiSNA, Navarra, Spain., Varela-Rey M; Gene Regulatory Control in Disease Laboratory, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), University of Santiago de Compostela, Santiago de Compostela, A Coruña, Spain., Prevot V; Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S 1172, European Genomic Institute for Diabetes (EGID), Lille, France., Schwaninger M; Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany., Meijnikman A; Department of Internal and Experimental Vascular Medicine, Amsterdam University Medical Centers, Location AMC, Amsterdam, The Netherlands., Bravo SB; CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), A Coruña, Spain., Frühbeck G; Department of Pathology, Amsterdam University Medical Center, Amsterdam, The Netherlands.; Department of Endocrinology & Nutrition, Metabolic Research Laboratory, Clínica Universidad de Navarra, University of Navarra, IdiSNA, Navarra, Spain., Nogueiras R; Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain.; Department of Endocrinology & Nutrition, Metabolic Research Laboratory, Clínica Universidad de Navarra, University of Navarra, IdiSNA, Navarra, Spain.; Galician Agency of Innovation (GAIN), Xunta de Galicia, Santiago de Compostela, Spain. |
---|---|
Jazyk: | angličtina |
Zdroj: | Hepatology (Baltimore, Md.) [Hepatology] 2024 May 19. Date of Electronic Publication: 2024 May 19. |
DOI: | 10.1097/HEP.0000000000000930 |
Abstrakt: | Background and Aims: Mitochondrial antiviral signaling protein (MAVS) is a critical regulator that activates the host's innate immunity against RNA viruses, and its signaling pathway has been linked to the secretion of proinflammatory cytokines. However, the actions of MAVS on inflammatory pathways during the development of metabolic dysfunction-associated steatotic liver disease (MASLD) have been little studied. Approach and Results: Liver proteomic analysis of mice with genetically manipulated hepatic p63, a transcription factor that induces liver steatosis, revealed MAVS as a target downstream of p63. MAVS was thus further evaluated in liver samples from patients and in animal models with MASLD. Genetic inhibition of MAVS was performed in hepatocyte cell lines, primary hepatocytes, spheroids, and mice. MAVS expression is induced in the liver of both animal models and people with MASLD as compared with those without liver disease. Using genetic knockdown of MAVS in adult mice ameliorates diet-induced MASLD. In vitro, silencing MAVS blunts oleic and palmitic acid-induced lipid content, while its overexpression increases the lipid load in hepatocytes. Inhibiting hepatic MAVS reduces circulating levels of the proinflammatory cytokine TNFα and the hepatic expression of both TNFα and NFκβ. Moreover, the inhibition of ERK abolished the activation of TNFα induced by MAVS. The posttranslational modification O -GlcNAcylation of MAVS is required to activate inflammation and to promote the high lipid content in hepatocytes. Conclusions: MAVS is involved in the development of steatosis, and its inhibition in previously damaged hepatocytes can ameliorate MASLD. (Copyright © 2024 The Author(s). Published by Wolters Kluwer Health, Inc.) |
Databáze: | MEDLINE |
Externí odkaz: |