TorchMD-Net 2.0: Fast Neural Network Potentials for Molecular Simulations.

Autor: Pelaez RP; Computational Science Laboratory, Universitat Pompeu Fabra, Barcelona Biomedical Research Park (PRBB), C Dr. Aiguader 88, 08003 Barcelona, Spain., Simeon G; Computational Science Laboratory, Universitat Pompeu Fabra, Barcelona Biomedical Research Park (PRBB), C Dr. Aiguader 88, 08003 Barcelona, Spain., Galvelis R; Computational Science Laboratory, Universitat Pompeu Fabra, Barcelona Biomedical Research Park (PRBB), C Dr. Aiguader 88, 08003 Barcelona, Spain.; Acellera Labs, C Dr Trueta 183, 08005 Barcelona, Spain., Mirarchi A; Computational Science Laboratory, Universitat Pompeu Fabra, Barcelona Biomedical Research Park (PRBB), C Dr. Aiguader 88, 08003 Barcelona, Spain., Eastman P; Department of Chemistry, Stanford University, Stanford, California 94305, United States., Doerr S; Acellera Labs, C Dr Trueta 183, 08005 Barcelona, Spain., Thölke P; Acellera Labs, C Dr Trueta 183, 08005 Barcelona, Spain., Markland TE; Department of Chemistry, Stanford University, Stanford, California 94305, United States., De Fabritiis G; Computational Science Laboratory, Universitat Pompeu Fabra, Barcelona Biomedical Research Park (PRBB), C Dr. Aiguader 88, 08003 Barcelona, Spain.; Acellera Labs, C Dr Trueta 183, 08005 Barcelona, Spain.; Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluis Companys 23, 08010 Barcelona, Spain.
Jazyk: angličtina
Zdroj: Journal of chemical theory and computation [J Chem Theory Comput] 2024 May 28; Vol. 20 (10), pp. 4076-4087. Date of Electronic Publication: 2024 May 14.
DOI: 10.1021/acs.jctc.4c00253
Abstrakt: Achieving a balance between computational speed, prediction accuracy, and universal applicability in molecular simulations has been a persistent challenge. This paper presents substantial advancements in TorchMD-Net software, a pivotal step forward in the shift from conventional force fields to neural network-based potentials. The evolution of TorchMD-Net into a more comprehensive and versatile framework is highlighted, incorporating cutting-edge architectures such as TensorNet. This transformation is achieved through a modular design approach, encouraging customized applications within the scientific community. The most notable enhancement is a significant improvement in computational efficiency, achieving a very remarkable acceleration in the computation of energy and forces for TensorNet models, with performance gains ranging from 2× to 10× over previous, nonoptimized, iterations. Other enhancements include highly optimized neighbor search algorithms that support periodic boundary conditions and smooth integration with existing molecular dynamics frameworks. Additionally, the updated version introduces the capability to integrate physical priors, further enriching its application spectrum and utility in research. The software is available at https://github.com/torchmd/torchmd-net.
Databáze: MEDLINE