In-vitro biofilm removal from TiUnite® implant surface with an air polishing and two different plasma devices.

Autor: Haude S; Department of Restorative Dentistry, Periodontology, Endodontology, Preventive Dentistry and Paediatric Dentistry, Dental School, University Medicine Greifswald, Walther-Rathenau-Str. 42a, Greifswald, D - 17475, Germany., Matthes R; Department of Restorative Dentistry, Periodontology, Endodontology, Preventive Dentistry and Paediatric Dentistry, Dental School, University Medicine Greifswald, Walther-Rathenau-Str. 42a, Greifswald, D - 17475, Germany., Pitchika V; Department of Restorative Dentistry, Periodontology, Endodontology, Preventive Dentistry and Paediatric Dentistry, Dental School, University Medicine Greifswald, Walther-Rathenau-Str. 42a, Greifswald, D - 17475, Germany., Holtfreter B; Department of Restorative Dentistry, Periodontology, Endodontology, Preventive Dentistry and Paediatric Dentistry, Dental School, University Medicine Greifswald, Walther-Rathenau-Str. 42a, Greifswald, D - 17475, Germany., Schlüter R; Imaging Center of the Department of Biology, University of Greifswald, Greifswald, Germany., Gerling T; ZIK Plasmatis, Leibniz-Institute for Plasma Science and Technology e.V. (INP), a member of the Leibniz Research Alliance Leibniz Health Technology, Greifswald, Germany., Kocher T; Department of Restorative Dentistry, Periodontology, Endodontology, Preventive Dentistry and Paediatric Dentistry, Dental School, University Medicine Greifswald, Walther-Rathenau-Str. 42a, Greifswald, D - 17475, Germany., Jablonowski L; Department of Restorative Dentistry, Periodontology, Endodontology, Preventive Dentistry and Paediatric Dentistry, Dental School, University Medicine Greifswald, Walther-Rathenau-Str. 42a, Greifswald, D - 17475, Germany. lukasz.jablonowski@uni-greifswald.de.
Jazyk: angličtina
Zdroj: BMC oral health [BMC Oral Health] 2024 May 13; Vol. 24 (1), pp. 558. Date of Electronic Publication: 2024 May 13.
DOI: 10.1186/s12903-024-04230-9
Abstrakt: Background: We investigated the efficacy of two different cold atmospheric pressure jet plasma devices (CAP09 and CAPmed) and an air polishing device with glycine powder (AP) either applied as monotherapies or combined therapies (AP + CAP09; AP + CAPmed), in microbial biofilm removal from discs with anodised titanium surface.
Methods: Discs covered with 7-day-old microbial biofilm were treated either with CAP09, CAPmed, AP, AP + CAP09 or AP + CAPmed and compared with negative and positive controls. Biofilm removal was assessed with flourescence and electron microscopy immediately after treatment and after 5 days of reincubation of the treated discs.
Results: Treatment with CAP09 or CAPmed did not lead to an effective biofilm removal, whereas treatment with AP detached the complete biofilm, which however regrew to baseline magnitude after 5 days of reincubation. Both combination therapies (AP + CAP09 and AP + CAPmed) achieved a complete biofilm removal immediately after cleaning. However, biofilm regrew after 5 days on 50% of the discs treated with the combination therapy.
Conclusion: AP treatment alone can remove gross biofilm immediately from anodised titanium surfaces. However, it did not impede regrowth after 5 days, because microorganisms were probably hidden in holes and troughs, from which they could regrow, and which were inaccessible to AP. The combination of AP and plasma treatment probably removed or inactivated microorganisms also from these hard to access spots. These results were independent of the choice of plasma device.
(© 2024. The Author(s).)
Databáze: MEDLINE