Alternative electron pathways of photosynthesis power green algal CO2 capture.
Autor: | Peltier G; Aix Marseille Univ, CEA, CNRS, Institut de Biosciences et Biotechnologies Aix-Marseille, CEA Cadarache, 13108 Saint Paul-lez-Durance, France., Stoffel C; Department of Plant Biology, The Carnegie Institution for Science, Stanford, CA 94305, USA., Findinier J; Department of Plant Biology, The Carnegie Institution for Science, Stanford, CA 94305, USA., Madireddi SK; Department of Plant Biology, The Carnegie Institution for Science, Stanford, CA 94305, USA., Dao O; Aix Marseille Univ, CEA, CNRS, Institut de Biosciences et Biotechnologies Aix-Marseille, CEA Cadarache, 13108 Saint Paul-lez-Durance, France., Epting V; Aix Marseille Univ, CEA, CNRS, Institut de Biosciences et Biotechnologies Aix-Marseille, CEA Cadarache, 13108 Saint Paul-lez-Durance, France., Morin A; Aix Marseille Univ, CEA, CNRS, Institut de Biosciences et Biotechnologies Aix-Marseille, CEA Cadarache, 13108 Saint Paul-lez-Durance, France., Grossman A; Department of Plant Biology, The Carnegie Institution for Science, Stanford, CA 94305, USA.; Department of Biology, Stanford University, Stanford, CA 94305, USA.; Biosphere Science and Engineering Division, The Carnegie Institution for Science, Stanford, CA 94305, USA., Li-Beisson Y; Aix Marseille Univ, CEA, CNRS, Institut de Biosciences et Biotechnologies Aix-Marseille, CEA Cadarache, 13108 Saint Paul-lez-Durance, France., Burlacot A; Department of Plant Biology, The Carnegie Institution for Science, Stanford, CA 94305, USA.; Department of Biology, Stanford University, Stanford, CA 94305, USA.; Biosphere Science and Engineering Division, The Carnegie Institution for Science, Stanford, CA 94305, USA. |
---|---|
Jazyk: | angličtina |
Zdroj: | The Plant cell [Plant Cell] 2024 Oct 03; Vol. 36 (10), pp. 4132-4142. |
DOI: | 10.1093/plcell/koae143 |
Abstrakt: | Microalgae contribute to about half of global net photosynthesis, which converts sunlight into the chemical energy (ATP and NADPH) used to transform CO2 into biomass. Alternative electron pathways of photosynthesis have been proposed to generate additional ATP that is required to sustain CO2 fixation. However, the relative importance of each alternative pathway remains elusive. Here, we dissect and quantify the contribution of cyclic, pseudo-cyclic, and chloroplast-to-mitochondrion electron flows for their ability to sustain net photosynthesis in the microalga Chlamydomonas reinhardtii. We show that (i) each alternative pathway can provide sufficient additional energy to sustain high CO2 fixation rates, (ii) the alternative pathways exhibit cross-compensation, and (iii) the activity of at least one of the three alternative pathways is necessary to sustain photosynthesis. We further show that all pathways have very different efficiencies at energizing CO2 fixation, with the chloroplast-mitochondrion interaction being the most efficient. Overall, our data lay bioenergetic foundations for biotechnological strategies to improve CO2 capture and fixation. Competing Interests: Conflict of interest statement. None declared. (© The Author(s) 2024. Published by Oxford University Press on behalf of American Society of Plant Biologists.) |
Databáze: | MEDLINE |
Externí odkaz: |