Time-dependent proteomics and drug response in expanding cancer cells.

Autor: Pan Y; Center for Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China., Xuan Y; Center for Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China., Hao P; School of Life Science and Technology, ShanghaiTech University, Shanghai, PR China., Chen X; Center for Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China., Yan R; Center for Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China., Zhang C; School of Life Science and Technology, ShanghaiTech University, Shanghai, PR China., Ke X; Center for Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China. Electronic address: xisongke@shutcm.edu.cn., Qu Y; Center for Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China. Electronic address: yiqu@shutcm.edu.cn., Zhang X; Center for Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China. Electronic address: xuezhang@shutcm.edu.cn.
Jazyk: angličtina
Zdroj: Pharmacological research [Pharmacol Res] 2024 Jun; Vol. 204, pp. 107208. Date of Electronic Publication: 2024 May 09.
DOI: 10.1016/j.phrs.2024.107208
Abstrakt: Cancer cell line is commonly used for discovery and development of anti-cancer drugs. It is generally considered that drug response remains constant for a certain cell line due to the identity of genetics thus protein patterns. Here, we demonstrated that cancer cells continued dividing even after reaching confluence, in that the proteomics was changed continuously and dramatically with strong relevance to cell division, cell adhesion and cell metabolism, indicating time-dependent intrinsically reprogramming of cells during expansion. Of note, the inhibition effect of most anti-cancer drugs was strikingly attenuated in culture cells along with cell expansion, with the strongest change at the third day when cells were still expanding. Profiling of an FDA-approved drug library revealed that attenuation of response with cell expansion is common for most drugs, an exception was TAK165 that was a selective inhibitor of mitochondrial respiratory chain complex I. Finally, we screened a panel of natural products and identified four pentacyclic triterpenes as selective inhibitors of cancer cells under prolonged growth. Taken together, our findings underscore that caution should be taken in evaluation of anti-cancer drugs using culture cells, and provide agents selectively targeting overgrowth cancer cells.
Competing Interests: Declaration of Competing Interest The authors declare no competing interests.
(Copyright © 2024 The Authors. Published by Elsevier Ltd.. All rights reserved.)
Databáze: MEDLINE