An anthraquinone-based bismuth-iron metal-organic framework as an efficient photoanode in photoelectrochemical cells.

Autor: Shi C; Materials Science Institute of Madrid - Spanish National Research Council Sor Juana Inés de la Cruz, 3 28049 Madrid Spain gandara@icmm.csic.es., Gomez-Mendoza M; Photoactivated Processes Unit, IMDEA Energy Institute Móstoles Technology Park, Avenida Ramón de la Sagra 3, Móstoles 28935 Madrid Spain victor.delapenya@imdea.org., Gómez de Oliveira E; Materials Science Institute of Madrid - Spanish National Research Council Sor Juana Inés de la Cruz, 3 28049 Madrid Spain gandara@icmm.csic.es., García-Tecedor M; Photoactivated Processes Unit, IMDEA Energy Institute Móstoles Technology Park, Avenida Ramón de la Sagra 3, Móstoles 28935 Madrid Spain victor.delapenya@imdea.org., Barawi M; Photoactivated Processes Unit, IMDEA Energy Institute Móstoles Technology Park, Avenida Ramón de la Sagra 3, Móstoles 28935 Madrid Spain victor.delapenya@imdea.org., Esteban-Betegón F; Materials Science Institute of Madrid - Spanish National Research Council Sor Juana Inés de la Cruz, 3 28049 Madrid Spain gandara@icmm.csic.es., Liras M; Photoactivated Processes Unit, IMDEA Energy Institute Móstoles Technology Park, Avenida Ramón de la Sagra 3, Móstoles 28935 Madrid Spain victor.delapenya@imdea.org., Gutiérrez-Puebla E; Materials Science Institute of Madrid - Spanish National Research Council Sor Juana Inés de la Cruz, 3 28049 Madrid Spain gandara@icmm.csic.es., Monge A; Materials Science Institute of Madrid - Spanish National Research Council Sor Juana Inés de la Cruz, 3 28049 Madrid Spain gandara@icmm.csic.es., de la Peña O'Shea VA; Photoactivated Processes Unit, IMDEA Energy Institute Móstoles Technology Park, Avenida Ramón de la Sagra 3, Móstoles 28935 Madrid Spain victor.delapenya@imdea.org., Gándara F; Materials Science Institute of Madrid - Spanish National Research Council Sor Juana Inés de la Cruz, 3 28049 Madrid Spain gandara@icmm.csic.es.
Jazyk: angličtina
Zdroj: Chemical science [Chem Sci] 2024 Apr 02; Vol. 15 (18), pp. 6860-6866. Date of Electronic Publication: 2024 Apr 02 (Print Publication: 2024).
DOI: 10.1039/d4sc00980k
Abstrakt: Metal-organic frameworks (MOFs) are appealing candidate materials to design new photoelectrodes for use in solar energy conversion because of their modular nature and chemical versatility. However, to date there are few examples of MOFs that can be directly used as photoelectrodes, for which they must be able to afford charge separation upon light absorption, and promote the catalytic dissociation of water molecules, while maintaining structural integrity. Here, we have explored the use of the organic linker anthraquinone-2, 6-disulfonate (2, 6-AQDS) for the preparation of MOFs to be used as photoanodes. Thus, the reaction of 2, 6-AQDS with Bi(iii) or a combination of Bi(iii) and Fe(iii) resulted in two new MOFs, BiPF-10 and BiFePF-15, respectively. They display similar structural features, where the metal elements are disposed in inorganic-layer building units, which are pillared by the organic linkers by coordination bonds through the sulfonic acid groups. We show that the introduction of iron in the structure plays a crucial role for the practical use of the MOFs as a robust photoelectrode in a photoelectrochemical cell, producing as much as 1.23 mmol H 2 cm -2 with the use of BiFePF-15 as photoanode. By means of time-resolved and electrochemical impedance spectroscopic studies we have been able to unravel the charge transfer mechanism, which involves the formation of a radical intermediate species, exhibiting a longer-lived lifetime by the presence of the iron-oxo clusters in BiFePF-15 to reduce the charge transfer resistance.
Competing Interests: There are no conflicts to declare.
(This journal is © The Royal Society of Chemistry.)
Databáze: MEDLINE