Neural Mechanisms Associated With Postural Control in Collegiate Soccer and Non-Soccer Athletes.
Autor: | Jain D; Divya Jain and Tara Porfido are considering as co-first authors. Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York City, New York (D.J., N.L.D., A.C., C.E.); Department of Rehabilitation & Movement Sciences, School of Health Professions, Rutgers Biomedical and Health Sciences, Newark, New Jersey (T.P., A.M.B.); School of Health and Rehabilitation Sciences, The Ohio State University College of Medicine, Columbus, Ohio (J.B.C.); Department of Neurology, University of Utah (E.L.D., E.A.W.); George E. Wahlen Veterans Affairs Salt Lake City Healthcare System, Salt Lake City, Utah (E.L.D., E.A.W.); and Abilities Research Center, Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York City, New York (J.T.-M.)., Porfido T, de Souza NL, Brown AM, Caccese JB, Czykier A, Dennis EL, Tosto-Mancuso J, Wilde EA, Esopenko C |
---|---|
Jazyk: | angličtina |
Zdroj: | Journal of neurologic physical therapy : JNPT [J Neurol Phys Ther] 2024 Jul 01; Vol. 48 (3), pp. 151-158. Date of Electronic Publication: 2024 May 06. |
DOI: | 10.1097/NPT.0000000000000476 |
Abstrakt: | Background and Purpose: Sport-specific training may improve postural control, while repetitive head acceleration events (RHAEs) may compromise it. Understanding the neural mechanisms underlying postural control may contextualize changes due to training and RHAE. The goal of this study was to determine whether postural sway during the Balance Error Scoring System (BESS) is related to white matter organization (WMO) in collegiate athletes. Methods: Collegiate soccer ( N = 33) and non-soccer athletes ( N = 44) completed BESS and diffusion tensor imaging. Postural sway during each BESS stance, fractional anisotropy (FA), and mean diffusivity (MD) were extracted for each participant. Partial least squares analyses determined group differences in postural sway and WMO and the relationship between postural sway and WMO in soccer and non-soccer athletes separately. Results: Soccer athletes displayed better performance during BESS 6, with lower FA and higher MD in the medial lemniscus (ML) and inferior cerebellar peduncle (ICP), compared to non-soccer athletes. In soccer athletes, lower sway during BESS 2, 5, and 6 was associated with higher FA and lower MD in the corticospinal tract, ML, and ICP. In non-soccer athletes, lower sway during BESS 2 and 4 was associated with higher FA and lower MD in the ML and ICP. BESS 1 was associated with higher FA, and BESS 3 was associated with lower MD in the same tracts in non-soccer athletes. Discussion and Conclusions: Soccer and non-soccer athletes showed unique relationships between sway and WMO, suggesting that sport-specific exposures are partly responsible for changes in neurological structure and accompanying postural control performance and should be considered when evaluating postural control after injury.Video Abstract available for more insights from the authors (see the Video, Supplemental Digital Content, available at: http://links.lww.com/JNPT/A472 ). Competing Interests: Financial support was provided to Dr Esopenko through the School of Health Professions, Rutgers Biomedical and Health Sciences. The authors have no other conflicts of interest to disclose. The authors declare no conflict of interest. (Copyright © 2024 Academy of Neurologic Physical Therapy, APTA.) |
Databáze: | MEDLINE |
Externí odkaz: |