Probing Enzymatic PET Degradation: Molecular Dynamics Analysis of Cutinase Adsorption and Stability.

Autor: Sahihi M; Clermont Auvergne INP, CNRS, Institut de Chimie de Clermont-Ferrand, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France., Fayon P; CHU Clermont Ferrand, Clermont Auvergne INP, CNRS, ICCF, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France., Nauton L; Clermont Auvergne INP, CNRS, Institut de Chimie de Clermont-Ferrand, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France., Goujon F; Clermont Auvergne INP, CNRS, Institut de Chimie de Clermont-Ferrand, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France., Devémy J; Clermont Auvergne INP, CNRS, Institut de Chimie de Clermont-Ferrand, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France., Dequidt A; Clermont Auvergne INP, CNRS, Institut de Chimie de Clermont-Ferrand, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France., Hauret P; Manufacture Francaise des Pneumatiques Michelin, 23, Place des Carmes, 63040 Clermont-Ferrand, France., Malfreyt P; Clermont Auvergne INP, CNRS, Institut de Chimie de Clermont-Ferrand, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France.
Jazyk: angličtina
Zdroj: Journal of chemical information and modeling [J Chem Inf Model] 2024 May 27; Vol. 64 (10), pp. 4112-4120. Date of Electronic Publication: 2024 May 04.
DOI: 10.1021/acs.jcim.4c00079
Abstrakt: Understanding the mechanisms influencing poly(ethylene terephthalate) (PET) biodegradation is crucial for developing innovative strategies to accelerate the breakdown of this persistent plastic. In this study, we employed all-atom molecular dynamics simulation to investigate the adsorption process of the LCC-ICCG cutinase enzyme onto the PET surface. Our results revealed that hydrophobic, π-π, and H bond interactions, specifically involving aliphatic, aromatic, and polar uncharged amino acids, were the primary driving forces for the adsorption of the cutinase enzyme onto PET. Additionally, we observed a negligible change in the enzyme's tertiary structure during the interaction with PET (RMSD = 1.35 Å), while its secondary structures remained remarkably stable. Quantitative analysis further demonstrated that there is about a 24% decrease in the number of enzyme-water hydrogen bonds upon adsorption onto the PET surface. The significance of this study lies in unraveling the molecular intricacies of the adsorption process, providing valuable insights into the initial steps of enzymatic PET degradation.
Databáze: MEDLINE