Reduced graphene oxide electrodes meet lateral flow assays: A promising path to advanced point-of-care diagnostics.

Autor: Calucho E; Nanobioelectronics & Biosensors Group, Institut Català de Nanociència i Nanotecnologia (ICN2), CSIC and the Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, 08193, Barcelona, Spain; Autonomous University of Barcelona (UAB), Bellaterra, Barcelona, Spain., Álvarez-Diduk R; Nanobioelectronics & Biosensors Group, Institut Català de Nanociència i Nanotecnologia (ICN2), CSIC and the Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, 08193, Barcelona, Spain. Electronic address: ruslan.alvarez@icn2.cat., Piper A; Nanobioelectronics & Biosensors Group, Institut Català de Nanociència i Nanotecnologia (ICN2), CSIC and the Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, 08193, Barcelona, Spain., Rossetti M; Nanobioelectronics & Biosensors Group, Institut Català de Nanociència i Nanotecnologia (ICN2), CSIC and the Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, 08193, Barcelona, Spain., Nevanen TK; VTT Technical Research Centre of Finland Ltd., Tekniikantie 21, 02044, Espoo, Finland., Merkoçi A; Nanobioelectronics & Biosensors Group, Institut Català de Nanociència i Nanotecnologia (ICN2), CSIC and the Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, 08193, Barcelona, Spain; ICREA Institució Catalana de Recerca i Estudis Avançats, Passeig de Lluís Companys, 23, 08010, Barcelona, Spain. Electronic address: arben.merkoci@icn2.cat.
Jazyk: angličtina
Zdroj: Biosensors & bioelectronics [Biosens Bioelectron] 2024 Aug 15; Vol. 258, pp. 116315. Date of Electronic Publication: 2024 Apr 24.
DOI: 10.1016/j.bios.2024.116315
Abstrakt: Research in electrochemical detection in lateral flow assays (LFAs) has gained significant momentum in recent years. The primary impetus for this surge in interest is the pursuit of achieving lower limits of detection, especially given that LFAs are the most widely employed point-of-care biosensors. Conventionally, the strategy for merging electrochemistry and LFAs has centered on the superposition of screen-printed electrodes onto nitrocellulose substrates during LFA fabrication. Nevertheless, this approach poses substantial limitations regarding scalability. In response, we have developed a novel method for the complete integration of reduced graphene oxide (rGO) electrodes into LFA strips. We employed a CO 2 laser to concurrently reduce graphene oxide and pattern nitrocellulose, exposing its backing to create connection sites impervious to sample leakage. Subsequently, rGO and nitrocellulose were juxtaposed and introduced into a roll-to-roll system using a wax printer. The exerted pressure facilitated the transfer of rGO onto the nitrocellulose. We systematically evaluated several electrochemical strategies to harness the synergy between rGO and LFAs. While certain challenges persist, our rGO transfer technology presents compelling potential for setting a new standard in electrochemical LFA fabrication.
Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
(Copyright © 2024 The Authors. Published by Elsevier B.V. All rights reserved.)
Databáze: MEDLINE