Shifts in structure and dynamics of the soil microbiome in biofuel/fuel blend-affected areas triggered by different bioremediation treatments.

Autor: Hidalgo-Martinez K; Divisão de Recursos Microbianos, Centro Pluridisciplinar de Pesquisas Químicas, Biológicas E Agrícolas (CPQBA), Universidade Estadual de Campinas (UNICAMP), Paulínia, SP, CEP 13148-218, Brazil. khidalgo@javeriana.edu.co.; Programa de Pós-Graduação de Genética E Biologia Molecular, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, CEP 13083-970, Brazil. khidalgo@javeriana.edu.co., Giachini AJ; Núcleo Ressacada de Pesquisas Em Meio Ambiente (REMA)-Department of Microbiology, Federal University of Santa Catarina (UFSC), Campus Universitário Sul da Ilha-Rua José Olímpio da Silva, 1326-Bairro Tapera, Florianópolis, SC, 88049-500, Brazil., Schneider M; Núcleo Ressacada de Pesquisas Em Meio Ambiente (REMA)-Department of Microbiology, Federal University of Santa Catarina (UFSC), Campus Universitário Sul da Ilha-Rua José Olímpio da Silva, 1326-Bairro Tapera, Florianópolis, SC, 88049-500, Brazil., Soriano A; PETROBRAS/R&D Center (CENPES), Cidade Universitária, Av. Horácio Macedo, Ilha Do Fundão, Rio de Janeiro, 950, ZIP 21941-915, Brazil., Baessa MP; PETROBRAS/R&D Center (CENPES), Cidade Universitária, Av. Horácio Macedo, Ilha Do Fundão, Rio de Janeiro, 950, ZIP 21941-915, Brazil., Martins LF; PETROBRAS/R&D Center (CENPES), Cidade Universitária, Av. Horácio Macedo, Ilha Do Fundão, Rio de Janeiro, 950, ZIP 21941-915, Brazil., de Oliveira VM; Divisão de Recursos Microbianos, Centro Pluridisciplinar de Pesquisas Químicas, Biológicas E Agrícolas (CPQBA), Universidade Estadual de Campinas (UNICAMP), Paulínia, SP, CEP 13148-218, Brazil.
Jazyk: angličtina
Zdroj: Environmental science and pollution research international [Environ Sci Pollut Res Int] 2024 May; Vol. 31 (23), pp. 33663-33684. Date of Electronic Publication: 2024 Apr 30.
DOI: 10.1007/s11356-024-33304-y
Abstrakt: The use of biofuels has grown in the last decades as a consequence of the direct environmental impacts of fossil fuel use. Elucidating structure, diversity, species interactions, and assembly mechanisms of microbiomes is crucial for understanding the influence of environmental disturbances. However, little is known about how contamination with biofuel/petrofuel blends alters the soil microbiome. Here, we studied the dynamics in the soil microbiome structure and composition of four field areas under long-term contamination with biofuel/fossil fuel blends (ethanol 10% and gasoline 90%-E10; ethanol 25% and gasoline 75%-E25; soybean biodiesel 20% and diesel 80%-B20) submitted to different bioremediation treatments along a temporal gradient. Soil microbiomes from biodiesel-polluted areas exhibited higher richness and diversity index values and more complex microbial communities than ethanol-polluted areas. Additionally, monitored natural attenuation B20-polluted areas were less affected by perturbations caused by bioremediation treatments. As a consequence, once biostimulation was applied, the degradation was slower compared with areas previously actively treated. In soils with low diversity and richness, the impact of bioremediation treatments on the microbiomes was greater, and as a result, the hydrocarbon degradation extent was higher. The network analysis showed that all abundant keystone taxa corresponded to well-known degraders, suggesting that the abundant species are core targets for biostimulation in soil remediation processes. Altogether, these findings showed that the knowledge gained through the study of microbiomes in contaminated areas may help design and conduct optimized bioremediation approaches, paving the way for future rationalized and efficient pollutant mitigation strategies.
(© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
Databáze: MEDLINE