Field-dependent THz transport nonlinearities in semiconductor nano structures.

Autor: Wach Q; Institute of Optics and Atomic Physics, Technische Universität Berlin, 10623 Berlin, Germany., Quick MT; Institute of Optics and Atomic Physics, Technische Universität Berlin, 10623 Berlin, Germany., Ayari S; Laboratoire de Physique de l'École normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris-Diderot, Sorbonne Paris Cité, Paris, France., Achtstein AW; Institute of Optics and Atomic Physics, Technische Universität Berlin, 10623 Berlin, Germany.; Fakultät für Physik, Universität Bielefeld, Universitätsstr. 25, 33615 Bielefeld, Germany. achtstein@physik.uni-bielefeld.de.
Jazyk: angličtina
Zdroj: Physical chemistry chemical physics : PCCP [Phys Chem Chem Phys] 2024 May 08; Vol. 26 (18), pp. 13995-14005. Date of Electronic Publication: 2024 May 08.
DOI: 10.1039/d4cp00952e
Abstrakt: Charge transport nonlinearities in semiconductor quantum dots and nanorods are studied. Using a density matrix formalism, we retrieve the field-dependent nonlinear mobility and show the possibility of intra-pulse gain. We further demonstrate that the dynamics of master equations can be captured in an analytical formula for the field-dependent charge carrier mobility, e.g. for two-level systems. This equation extends the linear response theory based Kubo-Greenwood result to nonlinear processes at elevated field strength, easily reached in THz transport spectroscopy. With these tools we analyze the field strength, chirp, temperature and dephasing dependence of the charge carrier mobility in the model system of CdSe quantum dots and wires. Stark broadening and Rabi splitting result in strong alterations of the mobility spectra, pronounced at low temperatures. The mobility spectra are strongly temperature and pulse shape dependent in the nonlinear regime. The findings are of immediate interest e.g. for nonlinear THz generation, conversion and amplification in 6G technology and nano electronics. Our results further enable experimentalists to fit and understand measured charge transport nonlinearities with analytical expressions and to design nanosystems with engineered material properties.
Databáze: MEDLINE