Polystyrene nanoplastics cause reproductive toxicity in zebrafish: PPAR mediated lipid metabolism disorder.
Autor: | Zheng Y; Wenzhou Medical University, Wenzhou 325035, PR China; Wenzhou Municipal Key Laboratory of Neurodevelopmental Pathology and Physiology, Wenzhou Medical University, Wenzhou 325035, PR China., Gan X; Wenzhou Medical University, Wenzhou 325035, PR China; Zhejiang Provincial Key Laboratory of Watershed Sciences and Health, School of Public health and Management, Wenzhou Medical University, Wenzhou 325035, PR China., Lin C; Wenzhou Medical University, Wenzhou 325035, PR China., Wang D; Wenzhou Medical University, Wenzhou 325035, PR China., Chen R; Wenzhou Medical University, Wenzhou 325035, PR China., Dai Y; Wenzhou Medical University, Wenzhou 325035, PR China., Jiang L; Wenzhou Medical University, Wenzhou 325035, PR China., Huang C; Wenzhou Medical University, Wenzhou 325035, PR China; Zhejiang Provincial Key Laboratory of Watershed Sciences and Health, School of Public health and Management, Wenzhou Medical University, Wenzhou 325035, PR China., Zhu Y; School of Medicine, Taizhou University, 318000 Taizhou, Zhejiang, PR China. Electronic address: zhuya@wmu.edu.cn., Song Y; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China. Electronic address: yangsong@rcees.ac.cn., Chen J; Wenzhou Medical University, Wenzhou 325035, PR China; Zhejiang Provincial Key Laboratory of Watershed Sciences and Health, School of Public health and Management, Wenzhou Medical University, Wenzhou 325035, PR China; Wenzhou Municipal Key Laboratory of Neurodevelopmental Pathology and Physiology, Wenzhou Medical University, Wenzhou 325035, PR China. Electronic address: feichen@wmu.edu.cn. |
---|---|
Jazyk: | angličtina |
Zdroj: | The Science of the total environment [Sci Total Environ] 2024 Jun 25; Vol. 931, pp. 172795. Date of Electronic Publication: 2024 Apr 25. |
DOI: | 10.1016/j.scitotenv.2024.172795 |
Abstrakt: | The ubiquitous presence of micro-and nanoplastics (MNPs) in the environment and everyday products has attracted attention due to their hazardous risks. However, the effects of MNPs on reproduction and the underlying mechanisms remain unclear. The present study investigated the impact of polystyrene (PS) nanoplastics of 80, 200 and 500 nm diameters on zebrafish reproduction at an environmentally relevant concentration of 0.5 mg/L. Exposure to PS delayed spermatogenesis and caused aberrant follicular growth, resulting in dysgenesis in F0 adults and impacting F1 embryo development. Notably, the reproductive toxicity exhibited size-dependency, with the 500 nm PS being the most detrimental. Combined analyses of transcriptomics and metabolomics in ovary tissue revealed that treatment with 500 nm PS affected the peroxisome proliferator-activated receptor (PPAR) signaling pathway, dysregulated lipid transport, binding and activity processes, and led to dysgenesis in zebrafish. Specifically, the ovulatory dysfunction induced by PS exposure resembled clinical manifestations of polycystic ovary syndrome (PCOS) and can be attributed to lipid metabolism disorder involving glycerophospholipid, sphingolipid, arachidonic acid, and alpha-linolenic acid. Collectively, our results provide new evidence revealing the molecular mechanisms of PS-induced reproductive toxicity, highlighting that MNPs may pose a risk to female reproductive health. Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. (Copyright © 2024 Elsevier B.V. All rights reserved.) |
Databáze: | MEDLINE |
Externí odkaz: |