Parasitic dodder expresses an arsenal of secreted cellulases with multi-substrate specificity during host invasion.

Autor: Edema H; Department of Arctic and Marine Biology, UiT the Arctic University of Norway, Tromsø, 9037, Norway; The Arctic Centre for Sustainable Energy, UiT the Arctic University of Norway, Tromsø, 9037, Norway. Electronic address: hilary.edema@uit.no., Bawin T; Department of Arctic and Marine Biology, UiT the Arctic University of Norway, Tromsø, 9037, Norway. Electronic address: thomas.bawin@uit.no., Olsen S; Department of Arctic and Marine Biology, UiT the Arctic University of Norway, Tromsø, 9037, Norway. Electronic address: stian.olsen@uit.no., Krause K; Department of Arctic and Marine Biology, UiT the Arctic University of Norway, Tromsø, 9037, Norway; The Arctic Centre for Sustainable Energy, UiT the Arctic University of Norway, Tromsø, 9037, Norway. Electronic address: kirsten.krause@uit.no., Karppinen K; Department of Arctic and Marine Biology, UiT the Arctic University of Norway, Tromsø, 9037, Norway; The Arctic Centre for Sustainable Energy, UiT the Arctic University of Norway, Tromsø, 9037, Norway. Electronic address: katja.karppinen@uit.no.
Jazyk: angličtina
Zdroj: Plant physiology and biochemistry : PPB [Plant Physiol Biochem] 2024 May; Vol. 210, pp. 108633. Date of Electronic Publication: 2024 Apr 17.
DOI: 10.1016/j.plaphy.2024.108633
Abstrakt: Cuscuta campestris is a common and problematic parasitic plant which relies on haustoria to connect to and siphon nutrients from host plants. Glycoside hydrolase family 9 (GH9) cellulases (EC 3.2.1.4) play critical roles in plant cell wall biosynthesis and disassembly, but their roles during Cuscuta host invasion remains underexplored. In this study, we identified 22 full-length GH9 cellulase genes in C. campestris genome, which encoded fifteen secreted and seven membrane-anchored cellulases that showed distinct phylogenetic relationships. Expression profiles suggested that some of the genes are involved in biosynthesis and remodeling of the parasite's cell wall during haustoriogenesis, while other genes encoding secreted B- and C-type cellulases are tentatively associated with degrading host cell walls during invasion. Transcriptomic data in a host-free system and in the presence of susceptible or partially resistant tomato hosts, showed for especially GH9B7, GH9B11 and GH9B12 a shift in expression profiles in the presence of hosts, being more highly expressed during host attachment, indicating that Cuscuta can tune cellulase expression in response to a host. Functional analyses of recombinant B- and C-type cellulases showed endoglucanase activities over wide pH and temperature conditions, and activities towards multiple cellulose and hemicellulose substrates. These findings improve our understanding of host cell wall disassembly by Cuscuta, and cellulase activity towards broad substrate range potentially explain its wide host range. This is the first study to provide a broad biochemical insight into Cuscuta GH9 cellulases, which based on our study may have potential applications in industrial bioprocessing.
Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
(Copyright © 2024 The Authors. Published by Elsevier Masson SAS.. All rights reserved.)
Databáze: MEDLINE