Towards parsimonious generative modeling of RNA families.

Autor: Calvanese F; Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, Laboratoire de Biologie Computationnelle et Quantitative - LCQB, Paris, France.; Laboratoire de Biophysique et Evolution, UMR CNRS-ESPCI 8231 Chimie Biologie Innovation, PSL University, Paris, France., Lambert CN; Laboratoire de Biophysique et Evolution, UMR CNRS-ESPCI 8231 Chimie Biologie Innovation, PSL University, Paris, France., Nghe P; Laboratoire de Biophysique et Evolution, UMR CNRS-ESPCI 8231 Chimie Biologie Innovation, PSL University, Paris, France., Zamponi F; Dipartimento di Fisica, Sapienza Università di Roma, Rome, Italy.; Laboratoire de Physique de l'Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, Paris, France., Weigt M; Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, Laboratoire de Biologie Computationnelle et Quantitative - LCQB, Paris, France.
Jazyk: angličtina
Zdroj: Nucleic acids research [Nucleic Acids Res] 2024 Jun 10; Vol. 52 (10), pp. 5465-5477.
DOI: 10.1093/nar/gkae289
Abstrakt: Generative probabilistic models emerge as a new paradigm in data-driven, evolution-informed design of biomolecular sequences. This paper introduces a novel approach, called Edge Activation Direct Coupling Analysis (eaDCA), tailored to the characteristics of RNA sequences, with a strong emphasis on simplicity, efficiency, and interpretability. eaDCA explicitly constructs sparse coevolutionary models for RNA families, achieving performance levels comparable to more complex methods while utilizing a significantly lower number of parameters. Our approach demonstrates efficiency in generating artificial RNA sequences that closely resemble their natural counterparts in both statistical analyses and SHAPE-MaP experiments, and in predicting the effect of mutations. Notably, eaDCA provides a unique feature: estimating the number of potential functional sequences within a given RNA family. For example, in the case of cyclic di-AMP riboswitches (RF00379), our analysis suggests the existence of approximately 1039 functional nucleotide sequences. While huge compared to the known <4000 natural sequences, this number represents only a tiny fraction of the vast pool of nearly 1082 possible nucleotide sequences of the same length (136 nucleotides). These results underscore the promise of sparse and interpretable generative models, such as eaDCA, in enhancing our understanding of the expansive RNA sequence space.
(© The Author(s) 2024. Published by Oxford University Press on behalf of Nucleic Acids Research.)
Databáze: MEDLINE