Exploring the link between a novel approach for computer aided lung sound analysis and imaging biomarkers: a cross-sectional study.

Autor: Lauwers E; Laboratory of Experimental Medicine and Pediatrics and member of Infla-Med Research Consortium of Excellence, University of Antwerp, Wilrijk, Belgium. eline.lauwers@uantwerpen.be.; Fluidda NV, Kontich, Belgium. eline.lauwers@uantwerpen.be., Stas T; CoSys-Lab Research Group, University of Antwerp and Flanders Make Strategic Research Center, Wilrijk, Lommel, Belgium., McLane I; Sonavi Labs, Baltimore, MD, USA.; Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, USA., Snoeckx A; Department of Radiology, Antwerp University Hospital, Edegem, Belgium.; Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium., Van Hoorenbeeck K; Laboratory of Experimental Medicine and Pediatrics and member of Infla-Med Research Consortium of Excellence, University of Antwerp, Wilrijk, Belgium.; Department of Pediatrics, Antwerp University Hospital, Edegem, Belgium., De Backer W; Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium.; Fluidda NV, Kontich, Belgium.; MedImprove BV, Kontich, Belgium., Ides K; Laboratory of Experimental Medicine and Pediatrics and member of Infla-Med Research Consortium of Excellence, University of Antwerp, Wilrijk, Belgium.; CoSys-Lab Research Group, University of Antwerp and Flanders Make Strategic Research Center, Wilrijk, Lommel, Belgium.; Department of Pediatrics, Antwerp University Hospital, Edegem, Belgium.; MedImprove BV, Kontich, Belgium., Steckel J; CoSys-Lab Research Group, University of Antwerp and Flanders Make Strategic Research Center, Wilrijk, Lommel, Belgium., Verhulst S; Laboratory of Experimental Medicine and Pediatrics and member of Infla-Med Research Consortium of Excellence, University of Antwerp, Wilrijk, Belgium.; Department of Pediatrics, Antwerp University Hospital, Edegem, Belgium.
Jazyk: angličtina
Zdroj: Respiratory research [Respir Res] 2024 Apr 24; Vol. 25 (1), pp. 177. Date of Electronic Publication: 2024 Apr 24.
DOI: 10.1186/s12931-024-02810-5
Abstrakt: Background: Computer Aided Lung Sound Analysis (CALSA) aims to overcome limitations associated with standard lung auscultation by removing the subjective component and allowing quantification of sound characteristics. In this proof-of-concept study, a novel automated approach was evaluated in real patient data by comparing lung sound characteristics to structural and functional imaging biomarkers.
Methods: Patients with cystic fibrosis (CF) aged > 5y were recruited in a prospective cross-sectional study. CT scans were analyzed by the CF-CT scoring method and Functional Respiratory Imaging (FRI). A digital stethoscope was used to record lung sounds at six chest locations. Following sound characteristics were determined: expiration-to-inspiration (E/I) signal power ratios within different frequency ranges, number of crackles per respiratory phase and wheeze parameters. Linear mixed-effects models were computed to relate CALSA parameters to imaging biomarkers on a lobar level.
Results: 222 recordings from 25 CF patients were included. Significant associations were found between E/I ratios and structural abnormalities, of which the ratio between 200 and 400 Hz appeared to be most clinically relevant due to its relation with bronchiectasis, mucus plugging, bronchial wall thickening and air trapping on CT. The number of crackles was also associated with multiple structural abnormalities as well as regional airway resistance determined by FRI. Wheeze parameters were not considered in the statistical analysis, since wheezing was detected in only one recording.
Conclusions: The present study is the first to investigate associations between auscultatory findings and imaging biomarkers, which are considered the gold standard to evaluate the respiratory system. Despite the exploratory nature of this study, the results showed various meaningful associations that highlight the potential value of automated CALSA as a novel non-invasive outcome measure in future research and clinical practice.
(© 2024. The Author(s).)
Databáze: MEDLINE
Nepřihlášeným uživatelům se plný text nezobrazuje