Structural simulation and selective inhibitor discovery study for histone demethylases KDM4E/6B from a computational perspective.
Autor: | Wang C; Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China; School of Pharmacy, Shenyang Pharmaceutical University, Benxi 117004, China., Hu B; Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China; School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Benxi 117004, China; Key Laboratory of Intelligent Drug Design and New Drug Discovery of Liaoning Province, Shenyang Pharmaceutical University, Shenyang 110016, China., Yang Y; Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China; School of Pharmacy, Shenyang Pharmaceutical University, Benxi 117004, China., Wang Y; Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China; School of Pharmacy, Shenyang Pharmaceutical University, Benxi 117004, China., Qin J; Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China; School of Pharmacy, Shenyang Pharmaceutical University, Benxi 117004, China., Wen X; Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China; School of Pharmacy, Shenyang Pharmaceutical University, Benxi 117004, China., Li Y; Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China; School of Pharmacy, Shenyang Pharmaceutical University, Benxi 117004, China., Li H; Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China; School of Pharmacy, Shenyang Pharmaceutical University, Benxi 117004, China., Wang Y; Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China; School of Pharmacy, Shenyang Pharmaceutical University, Benxi 117004, China., Wang J; Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China; School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Benxi 117004, China; Key Laboratory of Intelligent Drug Design and New Drug Discovery of Liaoning Province, Shenyang Pharmaceutical University, Shenyang 110016, China., Liu Y; Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China; School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Benxi 117004, China; Key Laboratory of Intelligent Drug Design and New Drug Discovery of Liaoning Province, Shenyang Pharmaceutical University, Shenyang 110016, China. Electronic address: y.liu@syphu.edu.cn. |
---|---|
Jazyk: | angličtina |
Zdroj: | Computational biology and chemistry [Comput Biol Chem] 2024 Jun; Vol. 110, pp. 108072. Date of Electronic Publication: 2024 Apr 12. |
DOI: | 10.1016/j.compbiolchem.2024.108072 |
Abstrakt: | The methylation and demethylation of lysine and arginine side chains are fundamental processes in gene regulation and disease development. Histone lysine methylation, controlled by histone lysine methyltransferases (KMTs) and histone lysine demethylases (KDMs), plays a vital role in maintaining cellular homeostasis and has been implicated in diseases such as cancer and aging. This study focuses on two members of the lysine demethylase (KDM) family, KDM4E and KDM6B, which are significant in gene regulation and disease pathogenesis. KDM4E demonstrates selectivity for gene regulation, particularly concerning cancer, while KDM6B is implicated in inflammation and cancer. The study utilizes specific inhibitors, DA-24905 and GSK-J1, showcasing their exceptional selectivity for KDM4E and KDM6B, respectively. Employing an array of computational simulations, including sequence alignment, molecular docking, dynamics simulations, and free energy calculations, we conclude that although the binding cavities of KDM4E and KDM6B has high similarity, there are still some different crucial amino acid residues, indicating diverse binding forms between protein and ligands. Various interaction predominates when proteins are bound to different ligands, which also has significant effect on selective inhibition. These findings provide insights into potential therapeutic strategies for diseases by selectively targeting these KDM members. Competing Interests: Declaration of Competing Interest We declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work, there is no professional or other personal interest of any nature or kind in any product, service and/or company that could be construed as influencing the position presented in, or the review of, the manuscript entitled. (Copyright © 2024 Elsevier Ltd. All rights reserved.) |
Databáze: | MEDLINE |
Externí odkaz: |