Association of Localizing 18 F-FDG-PET Hypometabolism and Outcome Following Epilepsy Surgery: Systematic Review and Meta-Analysis.

Autor: Courtney MR; From the Department of Neuroscience (M.R.C., A.A.-B., Z.C., B.S., J.-P.N., A.N., C.M., J.B., M.L., P.K., T.J.O.B., L.V.), School of Translational Medicine, Monash University; Department of Neurology (M.R.C., B.S., J.-P.N., A.N., P.K., T.J.O.B., L.V.), Alfred Health; Department of Neurology (M.R.C., J.-P.N., A.N., P.K., T.J.O.B., L.V.), Royal Melbourne Hospital; Department of Radiology (M.L.), Alfred Health; Department of Electrical and Computer Systems Engineering (M.L.), Monash University; and Department of Medicine (P.K., T.J.O.B., L.V.), The University of Melbourne, Victoria, Australia., Antonic-Baker A; From the Department of Neuroscience (M.R.C., A.A.-B., Z.C., B.S., J.-P.N., A.N., C.M., J.B., M.L., P.K., T.J.O.B., L.V.), School of Translational Medicine, Monash University; Department of Neurology (M.R.C., B.S., J.-P.N., A.N., P.K., T.J.O.B., L.V.), Alfred Health; Department of Neurology (M.R.C., J.-P.N., A.N., P.K., T.J.O.B., L.V.), Royal Melbourne Hospital; Department of Radiology (M.L.), Alfred Health; Department of Electrical and Computer Systems Engineering (M.L.), Monash University; and Department of Medicine (P.K., T.J.O.B., L.V.), The University of Melbourne, Victoria, Australia., Chen Z; From the Department of Neuroscience (M.R.C., A.A.-B., Z.C., B.S., J.-P.N., A.N., C.M., J.B., M.L., P.K., T.J.O.B., L.V.), School of Translational Medicine, Monash University; Department of Neurology (M.R.C., B.S., J.-P.N., A.N., P.K., T.J.O.B., L.V.), Alfred Health; Department of Neurology (M.R.C., J.-P.N., A.N., P.K., T.J.O.B., L.V.), Royal Melbourne Hospital; Department of Radiology (M.L.), Alfred Health; Department of Electrical and Computer Systems Engineering (M.L.), Monash University; and Department of Medicine (P.K., T.J.O.B., L.V.), The University of Melbourne, Victoria, Australia., Sinclair B; From the Department of Neuroscience (M.R.C., A.A.-B., Z.C., B.S., J.-P.N., A.N., C.M., J.B., M.L., P.K., T.J.O.B., L.V.), School of Translational Medicine, Monash University; Department of Neurology (M.R.C., B.S., J.-P.N., A.N., P.K., T.J.O.B., L.V.), Alfred Health; Department of Neurology (M.R.C., J.-P.N., A.N., P.K., T.J.O.B., L.V.), Royal Melbourne Hospital; Department of Radiology (M.L.), Alfred Health; Department of Electrical and Computer Systems Engineering (M.L.), Monash University; and Department of Medicine (P.K., T.J.O.B., L.V.), The University of Melbourne, Victoria, Australia., Nicolo JP; From the Department of Neuroscience (M.R.C., A.A.-B., Z.C., B.S., J.-P.N., A.N., C.M., J.B., M.L., P.K., T.J.O.B., L.V.), School of Translational Medicine, Monash University; Department of Neurology (M.R.C., B.S., J.-P.N., A.N., P.K., T.J.O.B., L.V.), Alfred Health; Department of Neurology (M.R.C., J.-P.N., A.N., P.K., T.J.O.B., L.V.), Royal Melbourne Hospital; Department of Radiology (M.L.), Alfred Health; Department of Electrical and Computer Systems Engineering (M.L.), Monash University; and Department of Medicine (P.K., T.J.O.B., L.V.), The University of Melbourne, Victoria, Australia., Neal A; From the Department of Neuroscience (M.R.C., A.A.-B., Z.C., B.S., J.-P.N., A.N., C.M., J.B., M.L., P.K., T.J.O.B., L.V.), School of Translational Medicine, Monash University; Department of Neurology (M.R.C., B.S., J.-P.N., A.N., P.K., T.J.O.B., L.V.), Alfred Health; Department of Neurology (M.R.C., J.-P.N., A.N., P.K., T.J.O.B., L.V.), Royal Melbourne Hospital; Department of Radiology (M.L.), Alfred Health; Department of Electrical and Computer Systems Engineering (M.L.), Monash University; and Department of Medicine (P.K., T.J.O.B., L.V.), The University of Melbourne, Victoria, Australia., Marotta C; From the Department of Neuroscience (M.R.C., A.A.-B., Z.C., B.S., J.-P.N., A.N., C.M., J.B., M.L., P.K., T.J.O.B., L.V.), School of Translational Medicine, Monash University; Department of Neurology (M.R.C., B.S., J.-P.N., A.N., P.K., T.J.O.B., L.V.), Alfred Health; Department of Neurology (M.R.C., J.-P.N., A.N., P.K., T.J.O.B., L.V.), Royal Melbourne Hospital; Department of Radiology (M.L.), Alfred Health; Department of Electrical and Computer Systems Engineering (M.L.), Monash University; and Department of Medicine (P.K., T.J.O.B., L.V.), The University of Melbourne, Victoria, Australia., Bunyamin J; From the Department of Neuroscience (M.R.C., A.A.-B., Z.C., B.S., J.-P.N., A.N., C.M., J.B., M.L., P.K., T.J.O.B., L.V.), School of Translational Medicine, Monash University; Department of Neurology (M.R.C., B.S., J.-P.N., A.N., P.K., T.J.O.B., L.V.), Alfred Health; Department of Neurology (M.R.C., J.-P.N., A.N., P.K., T.J.O.B., L.V.), Royal Melbourne Hospital; Department of Radiology (M.L.), Alfred Health; Department of Electrical and Computer Systems Engineering (M.L.), Monash University; and Department of Medicine (P.K., T.J.O.B., L.V.), The University of Melbourne, Victoria, Australia., Law M; From the Department of Neuroscience (M.R.C., A.A.-B., Z.C., B.S., J.-P.N., A.N., C.M., J.B., M.L., P.K., T.J.O.B., L.V.), School of Translational Medicine, Monash University; Department of Neurology (M.R.C., B.S., J.-P.N., A.N., P.K., T.J.O.B., L.V.), Alfred Health; Department of Neurology (M.R.C., J.-P.N., A.N., P.K., T.J.O.B., L.V.), Royal Melbourne Hospital; Department of Radiology (M.L.), Alfred Health; Department of Electrical and Computer Systems Engineering (M.L.), Monash University; and Department of Medicine (P.K., T.J.O.B., L.V.), The University of Melbourne, Victoria, Australia., Kwan P; From the Department of Neuroscience (M.R.C., A.A.-B., Z.C., B.S., J.-P.N., A.N., C.M., J.B., M.L., P.K., T.J.O.B., L.V.), School of Translational Medicine, Monash University; Department of Neurology (M.R.C., B.S., J.-P.N., A.N., P.K., T.J.O.B., L.V.), Alfred Health; Department of Neurology (M.R.C., J.-P.N., A.N., P.K., T.J.O.B., L.V.), Royal Melbourne Hospital; Department of Radiology (M.L.), Alfred Health; Department of Electrical and Computer Systems Engineering (M.L.), Monash University; and Department of Medicine (P.K., T.J.O.B., L.V.), The University of Melbourne, Victoria, Australia., O'Brien TJ; From the Department of Neuroscience (M.R.C., A.A.-B., Z.C., B.S., J.-P.N., A.N., C.M., J.B., M.L., P.K., T.J.O.B., L.V.), School of Translational Medicine, Monash University; Department of Neurology (M.R.C., B.S., J.-P.N., A.N., P.K., T.J.O.B., L.V.), Alfred Health; Department of Neurology (M.R.C., J.-P.N., A.N., P.K., T.J.O.B., L.V.), Royal Melbourne Hospital; Department of Radiology (M.L.), Alfred Health; Department of Electrical and Computer Systems Engineering (M.L.), Monash University; and Department of Medicine (P.K., T.J.O.B., L.V.), The University of Melbourne, Victoria, Australia., Vivash L; From the Department of Neuroscience (M.R.C., A.A.-B., Z.C., B.S., J.-P.N., A.N., C.M., J.B., M.L., P.K., T.J.O.B., L.V.), School of Translational Medicine, Monash University; Department of Neurology (M.R.C., B.S., J.-P.N., A.N., P.K., T.J.O.B., L.V.), Alfred Health; Department of Neurology (M.R.C., J.-P.N., A.N., P.K., T.J.O.B., L.V.), Royal Melbourne Hospital; Department of Radiology (M.L.), Alfred Health; Department of Electrical and Computer Systems Engineering (M.L.), Monash University; and Department of Medicine (P.K., T.J.O.B., L.V.), The University of Melbourne, Victoria, Australia.
Jazyk: angličtina
Zdroj: Neurology [Neurology] 2024 May 14; Vol. 102 (9), pp. e209304. Date of Electronic Publication: 2024 Apr 16.
DOI: 10.1212/WNL.0000000000209304
Abstrakt: Background and Objectives: Although commonly used in the evaluation of patients for epilepsy surgery, the association between the detection of localizing 18 fluorine fluorodeoxyglucose PET ( 18 F-FDG-PET) hypometabolism and epilepsy surgery outcome is uncertain. We conducted a systematic review and meta-analysis to determine whether localizing 18 F-FDG-PET hypometabolism is associated with favorable outcome after epilepsy surgery.
Methods: A systematic literature search was undertaken. Eligible publications included evaluation with 18 F-FDG-PET before epilepsy surgery, with ≥10 participants, and those that reported surgical outcome at ≥12 months. Random-effects meta-analysis was used to calculate the odds of achieving a favorable outcome, defined as Engel class I, International League Against Epilepsy class 1-2, or seizure-free, with localizing 18 F-FDG-PET hypometabolism, defined as concordant with the epilepsy surgery resection zone. Meta-regression was used to characterize sources of heterogeneity.
Results: The database search identified 8,916 studies, of which 98 were included (total patients n = 4,104). Localizing 18 F-FDG-PET hypometabolism was associated with favorable outcome after epilepsy surgery for all patients with odds ratio (OR) 2.68 (95% CI 2.08-3.45). Subgroup analysis yielded similar findings for those with (OR 2.64, 95% CI 1.54-4.52) and without epileptogenic lesion detected on MRI (OR 2.49, 95% CI 1.80-3.44). Concordance with EEG (OR 2.34, 95% CI 1.43-3.83), MRI (OR 1.69, 95% CI 1.19-2.40), and triple concordance with both (OR 2.20, 95% CI 1.32-3.64) was associated with higher odds of favorable outcome. By contrast, diffuse 18 F-FDG-PET hypometabolism was associated with worse outcomes compared with focal hypometabolism (OR 0.34, 95% CI 0.22-0.54).
Discussion: Localizing 18 F-FDG-PET hypometabolism is associated with favorable outcome after epilepsy surgery, irrespective of the presence of an epileptogenic lesion on MRI. The extent of 18 F-FDG-PET hypometabolism provides additional information, with diffuse hypometabolism associated with worse surgical outcome than focal 18 F-FDG-PET hypometabolism. These findings support the incorporation of 18 F-FDG-PET into routine noninvasive investigations for patients being evaluated for epilepsy surgery to improve epileptogenic zone localization and to aid patient selection for surgery.
Databáze: MEDLINE