An exploration of the (3+1)-dimensional negative order KdV-CBS model: Wave solutions, Bäcklund transformation, and complexiton dynamics.
Autor: | Vivas-Cortez M; School of Physical and Mathematical Sciences, Faculty of Exact and Natural Sciences, Pontificia Universidad Catolica del Ecuador, Quito, Ecuador., Rani B; Department of Mathematics, University of the Punjab, Quaid-e-Azam Campus, Lahore, Pakistan., Raza N; Department of Mathematics, University of the Punjab, Quaid-e-Azam Campus, Lahore, Pakistan.; Department of Mathematics, Near East University, TRNC, Nicosia, Turkey., Basendwah GA; Department of Mathematics, King Abdulaziz University, Jeddah, Saudi Arabia., Imran M; College of Humanities and Sciences, Ajman University, Ajman, United Arab Emirates. |
---|---|
Jazyk: | angličtina |
Zdroj: | PloS one [PLoS One] 2024 Apr 16; Vol. 19 (4), pp. e0296978. Date of Electronic Publication: 2024 Apr 16 (Print Publication: 2024). |
DOI: | 10.1371/journal.pone.0296978 |
Abstrakt: | This research paper focuses on the study of the (3+1)-dimensional negative order KdV-Calogero-Bogoyavlenskii-Schiff (KdV-CBS) equation, an important nonlinear partial differential equation in oceanography. The primary objective is to explore various solution techniques and analyze their graphical representations. Initially, two wave, three wave, and multi-wave solutions of the negative order KdV CBS equation are derived using its bilinear form. This analysis shed light on the behavior and characteristics of the equation's wave solutions. Furthermore, a bilinear Bäcklund transform is employed by utilizing the Hirota bilinear form. This transformation yields exponential and rational function solutions, contributing to a more comprehensive understanding of the equation. The resulting solutions are accompanied by graphical representations, providing visual insights into their structures. Moreover, the extended transformed rational function method is applied to obtain complexiton solutions. This approach, executed through the bilinear form, facilitated the discovery of additional solutions with intriguing properties. The graphical representations, spanning 2D, 3D, and contour plots, serve as valuable visual aids for understanding the complex dynamics and behaviors exhibited by the equation's solutions. Competing Interests: The authors have declared that no competing interests exist. (Copyright: © 2024 Vivas-Cortez et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.) |
Databáze: | MEDLINE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |