Characterization of the Edge States in Colloidal Bi 2 Se 3 Platelets.

Autor: Moes JR; Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands., Vliem JF; Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands., de Melo PMMC; Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands., Wigmans TC; Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands., Botello-Méndez AR; Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands., Mendes RG; Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands., van Brenk EF; Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands., Swart I; Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands., Maisel Licerán L; Institute for Theoretical Physics and Center for Extreme Matter and Emergent Phenomena, Utrecht University, Princetonplein 5, 3584 CC, Utrecht, The Netherlands., Stoof HTC; Institute for Theoretical Physics and Center for Extreme Matter and Emergent Phenomena, Utrecht University, Princetonplein 5, 3584 CC, Utrecht, The Netherlands., Delerue C; Université de Lille, CNRS, Université Polytechnique Hauts-de-France, Junia, UMR 8520-IEMN, F-59000 Lille, France., Zanolli Z; Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands., Vanmaekelbergh D; Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands.
Jazyk: angličtina
Zdroj: Nano letters [Nano Lett] 2024 May 01; Vol. 24 (17), pp. 5110-5116. Date of Electronic Publication: 2024 Apr 16.
DOI: 10.1021/acs.nanolett.3c04460
Abstrakt: The remarkable development of colloidal nanocrystals with controlled dimensions and surface chemistry has resulted in vast optoelectronic applications. But can they also form a platform for quantum materials, in which electronic coherence is key? Here, we use colloidal, two-dimensional Bi 2 Se 3 crystals, with precise and uniform thickness and finite lateral dimensions in the 100 nm range, to study the evolution of a topological insulator from three to two dimensions. For a thickness of 4-6 quintuple layers, scanning tunneling spectroscopy shows an 8 nm wide, nonscattering state encircling the platelet. We discuss the nature of this edge state with a low-energy continuum model and ab initio GW-Tight Binding theory. Our results also provide an indication of the maximum density of such states on a device.
Databáze: MEDLINE