Infection, dissemination, and transmission of lumpy skin disease virus in Aedes aegypti (Linnaeus), Culex tritaeniorhynchus (Giles), and Culex quinquefasciatus (Say) mosquitoes.

Autor: Riana E; The International Graduate Program of Veterinary Science and Technology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand; Center of Excellence in Animal Vector-Borne Diseases, Veterinary Parasitology Unit, Department of Veterinary Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand., Sri-In C; Center of Excellence in Animal Vector-Borne Diseases, Veterinary Parasitology Unit, Department of Veterinary Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand., Songkasupa T; Virology section, National Institute of Animal Health, Department of Livestock Development, Bangkok, Thailand., Bartholomay LC; Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin, USA., Thontiravong A; Center of Excellence in Animal Vector-Borne Diseases, Veterinary Parasitology Unit, Department of Veterinary Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand; Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand., Tiawsirisup S; Center of Excellence in Animal Vector-Borne Diseases, Veterinary Parasitology Unit, Department of Veterinary Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand. Electronic address: sonthaya.t@chula.ac.th.
Jazyk: angličtina
Zdroj: Acta tropica [Acta Trop] 2024 Jun; Vol. 254, pp. 107205. Date of Electronic Publication: 2024 Apr 03.
DOI: 10.1016/j.actatropica.2024.107205
Abstrakt: Lumpy skin disease virus (LSDV) is a transboundary viral disease in cattle and water buffaloes. Although this Poxvirus is supposedly transmitted by mechanical vectors, only a few studies have investigated the role of local vectors in the transmission of LSDV. This study examined the infection, dissemination, and transmission rates of LSDV in Aedes aegypti, Culex tritaeniorhynchus, and Culex quinquefasciatus following artificial membrane feeding of 10 2.7 , 10 3.7 , 10 4.7 TCID 50 /mL LSDV in sheep blood. The results demonstrated that these mosquito species were susceptible to LSDV, with Cx tritaeniorhynchus exhibiting significantly different characteristics from Ae. aegypti and Cx. quinquefasciatus. These three mosquito species were susceptible to LSDV. Ae. aegypti showed it as early as 2 days post-infection (dpi), indicating swift dissemination in this particular species. The extrinsic incubation period (EIP) of LSDV in Cx. tritaeniorhynchus and Cx. quinquefasciatus was 8 and 14 dpi, respectively. Ingestion of different viral titers in blood did not affect the infection, dissemination, or transmission rates of Cx. tritaeniorhynchus and Cx. quinquefasciatus. All rates remained consistently high at 8-14 dpi for Cx. tritaeniorhynchus. In all three species, LSDV remained detectable until 14 dpi. The present findings indicate that, Ae. aegypti, Cx. tritaeniorhynchus, and Cx. quinquefasciatus may act as vectors during the LSDV outbreak; their involvement may extend beyond being solely mechanical vectors.
Competing Interests: Declaration of competing interest The authors declare that they have no conflict of interests.
(Copyright © 2024 Elsevier B.V. All rights reserved.)
Databáze: MEDLINE