Ultrahigh peroxidase-like catalytic performance of Cu-N 4 and Cu-N 4 S active sites-containing reduced graphene oxide for sensitive electrochemical biosensing.
Autor: | Le PG; Department of BioNano Technology, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam, Gyeonggi, 13120, Republic of Korea; Department of Electronic Engineering, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam, Gyeonggi, 13120, Republic of Korea., Le XA; Department of BioNano Technology, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam, Gyeonggi, 13120, Republic of Korea., Duong HS; Department of BioNano Technology, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam, Gyeonggi, 13120, Republic of Korea., Jung SH; Department of Materials Science and Engineering, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam, Gyeonggi, 13120, Republic of Korea., Kim T; Department of Materials Science and Engineering, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam, Gyeonggi, 13120, Republic of Korea., Kim MI; Department of BioNano Technology, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam, Gyeonggi, 13120, Republic of Korea. Electronic address: moonil@gachon.ac.kr. |
---|---|
Jazyk: | angličtina |
Zdroj: | Biosensors & bioelectronics [Biosens Bioelectron] 2024 Jul 01; Vol. 255, pp. 116259. Date of Electronic Publication: 2024 Mar 31. |
DOI: | 10.1016/j.bios.2024.116259 |
Abstrakt: | Carbon-based nanozymes possessing peroxidase-like activity have attracted significant interest because of their potential to replace native peroxidases in biotechnology. Although various carbon-based nanozymes have been developed, their relatively low catalytic efficiency needs to be overcome to realize their practical utilization. Here, inspired by the elemental uniqueness of Cu and the doped elements N and S, as well as the active site structure of Cu-centered oxidoreductases, we developed a new carbon-based peroxidase-mimicking nanozyme, single-atom Cu-centered N- and S-codoped reduced graphene oxide (Cu-NS-rGO), which preserved many Cu-N Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. (Copyright © 2024 Elsevier B.V. All rights reserved.) |
Databáze: | MEDLINE |
Externí odkaz: |