Enhancement of electrocatalysis through magnetic field effects on mass transport.
Autor: | Vensaus P; Max Planck-EPFL Laboratory for Molecular Nanoscience and Technology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.; Institute of Physics (IPHYS), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.; Instituto de Nanosistemas, Escuela de Bio y Nanotecnologías, Universidad Nacional de San Martín, San Martín, Buenos Aires, Argentina., Liang Y; Max Planck-EPFL Laboratory for Molecular Nanoscience and Technology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.; Institute of Physics (IPHYS), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland., Ansermet JP; Institute of Physics (IPHYS), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland., Soler-Illia GJAA; Instituto de Nanosistemas, Escuela de Bio y Nanotecnologías, Universidad Nacional de San Martín, San Martín, Buenos Aires, Argentina., Lingenfelder M; Max Planck-EPFL Laboratory for Molecular Nanoscience and Technology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland. maggie@lingenfelder-lab.com.; Institute of Physics (IPHYS), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland. maggie@lingenfelder-lab.com. |
---|---|
Jazyk: | angličtina |
Zdroj: | Nature communications [Nat Commun] 2024 Apr 03; Vol. 15 (1), pp. 2867. Date of Electronic Publication: 2024 Apr 03. |
DOI: | 10.1038/s41467-024-46980-8 |
Abstrakt: | Magnetic field effects on electrocatalysis have recently gained attention due to the substantial enhancement of the oxygen evolution reaction (OER) on ferromagnetic catalysts. When detecting an enhanced catalytic activity, the effect of magnetic fields on mass transport must be assessed. In this study, we employ a specifically designed magneto-electrochemical system and non-magnetic electrodes to quantify magnetic field effects. Our findings reveal a marginal enhancement in reactions with high reactant availability, such as the OER, whereas substantial boosts exceeding 50% are observed in diffusion limited reactions, exemplified by the oxygen reduction reaction (ORR). Direct visualization and quantification of the whirling motion of ions under a magnetic field underscore the importance of Lorentz forces acting on the electrolyte ions, and demonstrate that bubbles' movement is a secondary phenomenon. Our results advance the fundamental understanding of magnetic fields in electrocatalysis and unveil new prospects for developing more efficient and sustainable energy conversion technologies. (© 2024. The Author(s).) |
Databáze: | MEDLINE |
Externí odkaz: |