Surviving in a multistressor world: Gene expression changes in earthworms exposed to heat, desiccation, and chemicals.

Autor: Tilikj N; Departamento de Biodiversidad, Ecología y Evolución, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, C/José Antonio Nováis 12, Madrid 28040, Spain. Electronic address: ntilikj@ucm.es., de la Fuente M; Environmental Toxicology and Biology Group, Facultad de Ciencias, Universidad Nacional de Educación a Distancia (UNED), Avenida de Esparta, s/n, Madrid 28232, Spain., González ABM; Environmental Toxicology and Biology Group, Facultad de Ciencias, Universidad Nacional de Educación a Distancia (UNED), Avenida de Esparta, s/n, Madrid 28232, Spain., Martínez-Guitarte JL; Environmental Toxicology and Biology Group, Facultad de Ciencias, Universidad Nacional de Educación a Distancia (UNED), Avenida de Esparta, s/n, Madrid 28232, Spain., Novo M; Departamento de Biodiversidad, Ecología y Evolución, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, C/José Antonio Nováis 12, Madrid 28040, Spain.
Jazyk: angličtina
Zdroj: Environmental toxicology and pharmacology [Environ Toxicol Pharmacol] 2024 Jun; Vol. 108, pp. 104428. Date of Electronic Publication: 2024 Apr 01.
DOI: 10.1016/j.etap.2024.104428
Abstrakt: An investigation of the effects of anthropogenic stress on terrestrial ecosystems is urgently needed. In this work, we explored how exposure to heat, desiccation, and chemical stress alters the expression of genes that encode heat shock proteins (HSPs), an enzyme that responds to oxidative stress (CAT), hypoxia-related proteins (HIF1 and HYOU), and a DNA repair-related protein (PARP1) in the earthworm Eisenia fetida. Exposure to heat (31°C) for 24 h upregulated HSPs and hypoxia-related genes, suggesting possible acquired thermotolerance. Desiccation showed a similar expression profile; however, the HSP response was activated to a lesser extent. Heat and desiccation activated the small HSP at 24 h, suggesting that they may play a role in adaptation. Simultaneous exposure to endosulfan and temperature for 7 h upregulated all of the evaluated genes, implicating a coordinated response involving multiple biological processes to ensure survival and acclimation. These results highlight the relevance of multistress analysis in terrestrial invertebrates.
Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
(Copyright © 2024 The Authors. Published by Elsevier B.V. All rights reserved.)
Databáze: MEDLINE