Selective Transition Enhancement in a g-Engineered Diradical.

Autor: Komeda J; Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany., Boudalis AK; Institut de Chimie de Strasbourg (UMR 7177, CNRS-Unistra), Université de Strasbourg, 4 rue Blaise Pascal, CS 90032, F-67081, Strasbourg, France.; Centre Européen de Sciences Quantiques (CESQ) within the, Institut de Science et d'Ingénierie Suparamolaiculaires - ISIS, 8 allée Gaspard Monge, BP 70028, F-67083, Strasbourg Cedex, France., Montenegro-Pohlhammer N; Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O'Higgins, General Gana 1702, Santiago, 8370854, Chile., Antheaume C; Centre Européen de Sciences Quantiques (CESQ) within the, Institut de Science et d'Ingénierie Suparamolaiculaires - ISIS, 8 allée Gaspard Monge, BP 70028, F-67083, Strasbourg Cedex, France., Mizuno A; Division of Chemistry, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan., Turek P; Institut de Chimie de Strasbourg (UMR 7177, CNRS-Unistra), Université de Strasbourg, 4 rue Blaise Pascal, CS 90032, F-67081, Strasbourg, France., Ruben M; Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.; Centre Européen de Sciences Quantiques (CESQ) within the, Institut de Science et d'Ingénierie Suparamolaiculaires - ISIS, 8 allée Gaspard Monge, BP 70028, F-67083, Strasbourg Cedex, France.; Institute of Quantum Materials and Technologies (IQMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.
Jazyk: angličtina
Zdroj: Chemistry (Weinheim an der Bergstrasse, Germany) [Chemistry] 2024 Jul 25; Vol. 30 (42), pp. e202400420. Date of Electronic Publication: 2024 May 03.
DOI: 10.1002/chem.202400420
Abstrakt: A diradical with engineered g-asymmetry was synthesized by grafting a nitroxide radical onto the [Y(Pc) 2 ]⋅ radical platform. Various spectroscopic techniques and computational studies revealed that the electronic structures of the two spin systems remained minimally affected within the diradical system. Fluid-solution Electron Paramagnetic Resonance (EPR) experiments revealed a weak exchange coupling with |J| ~ 0.014 cm -1 , subsequently rationalized by CAS-SCF calculations. Frozen solution continuous-wave (CW) EPR experiments showed a complicated and power-dependent spectrum that eluded analysis using the point-dipole model. Pulse EPR manipulations with varying microwave powers, or under varying magnetic fields, demonstrated that different resonances could be selectively enhanced or suppressed, based on their different tipping angles. In particular, Field-Swept Echo-Detected (FSED) spectra revealed absorptions of MW power-dependent intensities, while Field-Swept Spin Nutation (FSSN) experiments revealed two distinct Rabi frequencies. This study introduces a methodology to synthesize and characterize g-asymmetric two-spin systems, of interest in the implementation of spin-based CNOT gates.
(© 2024 The Authors. Chemistry - A European Journal published by Wiley-VCH GmbH.)
Databáze: MEDLINE