Enabling High-Performance Hybrid Solid-State Batteries by Improving the Microstructure of Free-Standing LATP/LFP Composite Cathodes.

Autor: Ihrig M; Institute of Energy and Climate Research, IEK-1: Materials Synthesis and Processing, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.; Department of Chemical Engineering, National Taiwan University of Science and Technology, No. 43, Keelung Rd., Section 4, Da'an Dist. Taipei City 106, Taiwan., Dashjav E; Institute of Energy and Climate Research, IEK-1: Materials Synthesis and Processing, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany., Odenwald P; Institute of Energy and Climate Research, IEK-1: Materials Synthesis and Processing, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.; Faculty of Engineering and Center for Nanointegration Duisburg-Essen (CENIDE), Universität Duisburg-Essen, Lotharstraße 1, 47057 Duisburg, Germany., Dellen C; Institute of Energy and Climate Research, IEK-1: Materials Synthesis and Processing, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany., Grüner D; Institute of Energy and Climate Research, IEK-2: Microstructure and Properties Forschungszentrum Jülich GmbH, 52425 Jülich, Germany., Gross JP; Institute of Energy and Climate Research, IEK-2: Microstructure and Properties Forschungszentrum Jülich GmbH, 52425 Jülich, Germany., Nguyen TTH; Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan., Lin YH; Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan., Scheld WS; Institute of Energy and Climate Research, IEK-1: Materials Synthesis and Processing, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany., Lee C; Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan., Schwaiger R; Institute of Energy and Climate Research, IEK-2: Microstructure and Properties Forschungszentrum Jülich GmbH, 52425 Jülich, Germany., Mahmoud A; GREENMat, CESAM Research Unit, Institute of Chemistry B6, University of Liège, 4000 Liège, Belgium., Malzbender J; Institute of Energy and Climate Research, IEK-2: Microstructure and Properties Forschungszentrum Jülich GmbH, 52425 Jülich, Germany., Guillon O; Institute of Energy and Climate Research, IEK-1: Materials Synthesis and Processing, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany., Uhlenbruck S; Institute of Energy and Climate Research, IEK-1: Materials Synthesis and Processing, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany., Finsterbusch M; Institute of Energy and Climate Research, IEK-1: Materials Synthesis and Processing, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany., Tietz F; Institute of Energy and Climate Research, IEK-1: Materials Synthesis and Processing, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany., Teng H; Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan.; Hierarchical Green-Energy Materials (Hi-GEM) Research Center, National Cheng Kung University, Tainan 70101, Taiwan.; Center of Applied Nanomedicine, National Cheng Kung University, Tainan 70101, Taiwan., Fattakhova-Rohlfing D; Institute of Energy and Climate Research, IEK-1: Materials Synthesis and Processing, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.; Faculty of Engineering and Center for Nanointegration Duisburg-Essen (CENIDE), Universität Duisburg-Essen, Lotharstraße 1, 47057 Duisburg, Germany.
Jazyk: angličtina
Zdroj: ACS applied materials & interfaces [ACS Appl Mater Interfaces] 2024 Apr 10; Vol. 16 (14), pp. 17461-17473. Date of Electronic Publication: 2024 Mar 31.
DOI: 10.1021/acsami.3c18542
Abstrakt: The phosphate lithium-ion conductor Li 1.5 Al 0.5 Ti 1.5 (PO 4 ) 3 (LATP) is an economically attractive solid electrolyte for the fabrication of safe and robust solid-state batteries, but high sintering temperatures pose a material engineering challenge for the fabrication of cell components. In particular, the high surface roughness of composite cathodes resulting from enhanced crystal growth is detrimental to their integration into cells with practical energy density. In this work, we demonstrate that efficient free-standing ceramic cathodes of LATP and LiFePO 4 (LFP) can be produced by using a scalable tape casting process. This is achieved by adding 5 wt % of Li 2 WO 4 (LWO) to the casting slurry and optimizing the fabrication process. LWO lowers the sintering temperature without affecting the phase composition of the materials, resulting in mechanically stable, electronically conductive, and free-standing cathodes with a smooth, homogeneous surface. The optimized cathode microstructure enables the deposition of a thin polymer separator attached to the Li metal anode to produce a cell with good volumetric and gravimetric energy densities of 289 Wh dm -3 and 180 Wh kg -1 , respectively, on the cell level and Coulombic efficiency above 99% after 30 cycles at 30 °C.
Databáze: MEDLINE