Inhibition of iron oxidation in Acidithiobacillus ferrooxidans by low-molecular-weight organic acids: Evaluation of performance and elucidation of mechanisms.

Autor: Li W; School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China; Engineering Research Center of Ministry of Education for Mine Ecological Restoration, China University of Mining and Technology, Xuzhou 221116, China; School of the Environment, The University of Queensland, Brisbane 4072, Australia., Feng Q; School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China; Engineering Research Center of Ministry of Education for Mine Ecological Restoration, China University of Mining and Technology, Xuzhou 221116, China. Electronic address: fqycumt@126.com., Li Z; School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China; Engineering Research Center of Ministry of Education for Mine Ecological Restoration, China University of Mining and Technology, Xuzhou 221116, China., Jin T; School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China; Engineering Research Center of Ministry of Education for Mine Ecological Restoration, China University of Mining and Technology, Xuzhou 221116, China., Zhang Y; School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China; Engineering Research Center of Ministry of Education for Mine Ecological Restoration, China University of Mining and Technology, Xuzhou 221116, China., Southam G; School of the Environment, The University of Queensland, Brisbane 4072, Australia; The Sustainable Minerals Institute, The University of Queensland, Brisbane 4072, Australia.
Jazyk: angličtina
Zdroj: The Science of the total environment [Sci Total Environ] 2024 Jun 01; Vol. 927, pp. 171919. Date of Electronic Publication: 2024 Mar 28.
DOI: 10.1016/j.scitotenv.2024.171919
Abstrakt: The catalytic role of Acidithiobacillus ferrooxidans (A. ferrooxidans) in iron biooxidation is pivotal in the formation of Acid Mine Drainage (AMD), which poses a significant threat to the environment. To control AMD generation, treatments with low-molecular-weight organic acids are being studied, yet their exact mechanisms are unclear. In this study, AMD materials, organic acids, and molecular methods were employed to gain a deeper understanding of the inhibitory effects of low-molecular-weight organic acids on the biooxidation of iron by A. ferrooxidans. The inhibition experiments of A. ferrooxidans on the oxidation of Fe 2+ showed that to attain a 90 % inhibition efficacy within 72 h, the minimum concentrations required for formic acid, acetic acid, propionic acid, and lactic acid are 0.5, 6, 4, and 10 mmol/L, respectively. Bacterial imaging illustrated the detrimental effects of these organic acids on the cell envelope structure. This includes severe damage to the outer membrane, particularly from formic and acetic acids, which also caused cell wall damage. Coupled with alterations in the types and quantities of protein, carbohydrate, and nucleic acid content in extracellular polymeric substances (EPS), indicate the mechanisms underlying these inhibitory treatments. Transcriptomic analysis revealed interference of these organic acids with crucial metabolic pathways, particularly those related to energy metabolism. These findings establish a comprehensive theoretical basis for understanding the inhibition of A. ferrooxidans' biooxidation by low-molecular-weight organic acids, offering a novel opportunity to effectively mitigate the generation of AMD at its source.
Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
(Copyright © 2024 Elsevier B.V. All rights reserved.)
Databáze: MEDLINE