Effect of lotus seed resistant starch on the bioconversion pathway of taurocholic acid by regulating the intestinal microbiota.
Autor: | He S; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China., Li L; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China., Lei S; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China., Su J; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China., Zhang Y; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China; China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China. Electronic address: zyifst@163.com., Zeng H; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China; China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China. Electronic address: zhlfst@fafu.edu.cn. |
---|---|
Jazyk: | angličtina |
Zdroj: | International journal of biological macromolecules [Int J Biol Macromol] 2024 May; Vol. 266 (Pt 1), pp. 131174. Date of Electronic Publication: 2024 Mar 27. |
DOI: | 10.1016/j.ijbiomac.2024.131174 |
Abstrakt: | Taurocholic acid (TCA) is abundant in the rat intestine and has multiple health benefits. In the gut, intestinal microbiota can transform TCA into different bile acid (BA) derivatives, with the composition of microbiota playing a crucial role in the transformation process. This study aims to investigate how lotus seed resistant starch (LRS) can regulate microbiota to influence BA transformation. A fecal fermentation study was conducted in vitro, using either LRS, high-amylose maize starch (HAMS), or glucose (GLU) to analyze microbiota composition, BA content, and metabolic enzyme activities over different fermentation times. Bioinformatics analysis found that LRS increased the relative abundance of Enterococcus, Bacillus, and Lactobacillus, and decreased Escherichia-Shigella, compared with HAMS and GLU. LRS also reduced total BA content and accelerated the conversion of TCA to cholic acid, deoxycholic acid, and other derivatives. These results reveal that LRS and GLU tend to mediate the dehydroxy pathway, whereas HAMS tends to secrete metabolic enzymes in the epimerization pathway. Therefore, the evidence that LRS may regulate TCA bioconversion may benefit human colon health research and provide an important theoretical basis, as well as offer new concepts for the development of functional foods. Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. (Copyright © 2024 Elsevier B.V. All rights reserved.) |
Databáze: | MEDLINE |
Externí odkaz: |