Leveraging Artificial Intelligence to Predict Health Belief Model and COVID-19 Vaccine Uptake Using Survey Text from US Nurses.

Autor: Omranian S; Division of Women's Health, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.; Department of Computer Science, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA., Khoddam A; Division of Women's Health, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA., Campos-Castillo C; Department of Media and Information, Michigan State University, East Lansing, MI 48824, USA., Fouladvand S; Stanford Center for Biomedical Informatics Research, Stanford University, Stanford, CA 94305, USA., McRoy S; Department of Computer Science, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA., Rich-Edwards J; Division of Women's Health, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
Jazyk: angličtina
Zdroj: Behavioral sciences (Basel, Switzerland) [Behav Sci (Basel)] 2024 Mar 07; Vol. 14 (3). Date of Electronic Publication: 2024 Mar 07.
DOI: 10.3390/bs14030217
Abstrakt: We investigated how artificial intelligence (AI) reveals factors shaping COVID-19 vaccine hesitancy among healthcare providers by examining their open-text comments. We conducted a longitudinal survey starting in Spring of 2020 with 38,788 current and former female nurses in three national cohorts to assess how the pandemic has affected their livelihood. In January and March-April 2021 surveys, participants were invited to contribute open-text comments and answer specific questions about COVID-19 vaccine uptake. A closed-ended question in the survey identified vaccine-hesitant (VH) participants who either had no intention or were unsure of receiving a COVID-19 vaccine. We collected 1970 comments from VH participants and trained two machine learning (ML) algorithms to identify behavioral factors related to VH. The first predictive model classified each comment into one of three health belief model (HBM) constructs (barriers, severity, and susceptibility) related to adopting disease prevention activities. The second predictive model used the words in January comments to predict the vaccine status of VH in March-April 2021; vaccine status was correctly predicted 89% of the time. Our results showed that 35% of VH participants cited barriers, 17% severity, and 7% susceptibility to receiving a COVID-19 vaccine. Out of the HBM constructs, the VH participants citing a barrier, such as allergic reactions and side effects, had the most associated change in vaccine status from VH to later receiving a vaccine.
Competing Interests: The authors declare no conflicts of interest.
Databáze: MEDLINE
Nepřihlášeným uživatelům se plný text nezobrazuje