Neuroactive metabolites and bile acids are altered in extremely premature infants with brain injury.

Autor: Pristner M; Department of Food Chemistry and Toxicology, University of Vienna, 1090 Vienna, Austria., Wasinger D; Department of Food Chemistry and Toxicology, University of Vienna, 1090 Vienna, Austria., Seki D; Center for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, 1090 Vienna, Austria; Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, 1090 Vienna, Austria., Klebermaß-Schrehof K; Department of Pediatrics and Adolescent Medicine, Division of Neonatology, Pediatric Intensive Care and Neuropediatrics, Comprehensive Center for Pediatrics, Medical University of Vienna, 1090 Vienna, Austria., Berger A; Department of Pediatrics and Adolescent Medicine, Division of Neonatology, Pediatric Intensive Care and Neuropediatrics, Comprehensive Center for Pediatrics, Medical University of Vienna, 1090 Vienna, Austria., Berry D; Center for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, 1090 Vienna, Austria; Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, 1090 Vienna, Austria., Wisgrill L; Department of Pediatrics and Adolescent Medicine, Division of Neonatology, Pediatric Intensive Care and Neuropediatrics, Comprehensive Center for Pediatrics, Medical University of Vienna, 1090 Vienna, Austria., Warth B; Department of Food Chemistry and Toxicology, University of Vienna, 1090 Vienna, Austria. Electronic address: benedikt.warth@univie.ac.at.
Jazyk: angličtina
Zdroj: Cell reports. Medicine [Cell Rep Med] 2024 Apr 16; Vol. 5 (4), pp. 101480. Date of Electronic Publication: 2024 Mar 22.
DOI: 10.1016/j.xcrm.2024.101480
Abstrakt: The gut microbiome is associated with pathological neurophysiological evolvement in extremely premature infants suffering from brain injury. The exact underlying mechanism and its associated metabolic signatures in infants are not fully understood. To decipher metabolite profiles linked to neonatal brain injury, we investigate the fecal and plasma metabolome of samples obtained from a cohort of 51 extremely premature infants at several time points, using liquid chromatography (LC)-high-resolution mass spectrometry (MS)-based untargeted metabolomics and LC-MS/MS-based targeted analysis for investigating bile acids and amidated bile acid conjugates. The data are integrated with 16S rRNA gene amplicon gut microbiome profiles as well as patient cytokine, growth factor, and T cell profiles. We find an early onset of differentiation in neuroactive metabolites between infants with and without brain injury. We detect several bacterially derived bile acid amino acid conjugates in plasma and feces. These results provide insights into the early-life metabolome of extremely premature infants.
Competing Interests: Declaration of interests The authors declare no competing interests.
(Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved.)
Databáze: MEDLINE