Phylogenomics reveals Adeleorina are an ancient and distinct subgroup of Apicomplexa.

Autor: Na I; Department of Botany, University of British Columbia, Vancouver, BC, Canada. Electronic address: inana96@gmail.com., Campos C; Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal., Lax G; Department of Botany, University of British Columbia, Vancouver, BC, Canada., Kwong WK; Department of Botany, University of British Columbia, Vancouver, BC, Canada; Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal., Keeling PJ; Department of Botany, University of British Columbia, Vancouver, BC, Canada. Electronic address: pkeeling@mail.ubc.ca.
Jazyk: angličtina
Zdroj: Molecular phylogenetics and evolution [Mol Phylogenet Evol] 2024 Jun; Vol. 195, pp. 108060. Date of Electronic Publication: 2024 Mar 12.
DOI: 10.1016/j.ympev.2024.108060
Abstrakt: Apicomplexans are a diverse phylum of unicellular eukaryotes that share obligate relationships with terrestrial and aquatic animal hosts. Many well-studied apicomplexans are responsible for several deadly zoonotic and human diseases, most notably malaria caused by Plasmodium. Interest in the evolutionary origin of apicomplexans has also spurred recent work on other more deeply-branching lineages, especially gregarines and sister groups like squirmids and chrompodellids. But a full picture of apicomplexan evolution is still lacking several lineages, and one major, diverse lineage that is notably absent is the adeleorinids. Adeleorina apicomplexans comprises hundreds of described species that infect invertebrate and vertebrate hosts across the globe. Although historically considered coccidians, phylogenetic trees based on limited data have shown conflicting branch positions for this subgroup, leaving this question unresolved. Phylogenomic trees and large-scale analyses comparing cellular functions and metabolism between major subgroups of apicomplexans have not incorporated Adeleorina because only a handful of molecular markers and a couple organellar genomes are available, ultimately excluding this group from contributing to our understanding of apicomplexan evolution and biology. To address this gap, we have generated complete genomes from mitochondria and plastids, as well as multiple deep-coverage single-cell transcriptomes of nuclear genes from two Adeleorina species, Klossia helicina and Legerella nova, and inferred a 206-protein phylogenomic tree of Apicomplexa. We observed distinct structures reported in species descriptions as remnant host structures surrounding adeleorinid oocysts. Klossia helicina and L. nova branched, as expected, with monoxenous adeleorinids within the Adeleorina and their mitochondrial and plastid genomes exhibited similarity to published organellar adeleorinid genomes. We show with a phylogeneomic tree and subsequent phylogenomic analyses that Adeleorina are not closely related to any of the currently sampled apicomplexan subgroups, and instead fall as a sister to a large clade encompassing Coccidia, Protococcidia, Hematozoa, and Nephromycida, collectively. This resolves Adeleorina as a key independently-branching group, separate from coccidians, on the tree of Apicomplexa, which now has all known major lineages sampled.
Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
(Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved.)
Databáze: MEDLINE