A Golgi Apparatus-Targeted Photothermal Agent with Protein Anchoring for Enhanced Cancer Photothermal Therapy.

Autor: Shi M; College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Jinan, 250014, P. R. China., Fu Z; College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Jinan, 250014, P. R. China., Pan W; College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Jinan, 250014, P. R. China., Wang K; College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Jinan, 250014, P. R. China., Liu X; College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Jinan, 250014, P. R. China., Li N; College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Jinan, 250014, P. R. China., Tang B; College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Jinan, 250014, P. R. China.; Laoshan Laboratory, Qingdao, 266237, P. R. China.
Jazyk: angličtina
Zdroj: Advanced healthcare materials [Adv Healthc Mater] 2024 Jul; Vol. 13 (17), pp. e2303749. Date of Electronic Publication: 2024 Mar 22.
DOI: 10.1002/adhm.202303749
Abstrakt: The Golgi apparatus (GA) is central in shuttling proteins from the endoplasmic reticulum to different cellular areas. Therefore, targeting the GA to precisely destroy its proteins through local heat could induce apoptosis, offering a potential avenue for effective cancer therapy. Herein, a GA-targeted photothermal agent based on protein anchoring is introduced for enhanced photothermal therapy of tumor through the modification of near-infrared molecular dye with maleimide derivative and benzene sulfonamide. The photothermal agent can actively target the GA and covalently anchor to its sulfhydryl proteins, thereby increasing its retention within the GA. Under laser irradiation, the heat generated by the photothermal agent efficiently disrupts sulfhydryl proteins in situ, leading to GA dysfunction and ultimately inducing cell apoptosis. In vivo experiments demonstrate that the photothermal agent can precisely treat tumors and significantly reduce side effects.
(© 2024 Wiley‐VCH GmbH.)
Databáze: MEDLINE