Cell constriction requires processive septal peptidoglycan synthase movement independent of FtsZ treadmilling in Staphylococcus aureus.

Autor: Schäper S; Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal. sschaeper@itqb.unl.pt., Brito AD; Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal.; Instituto Gulbenkian de Ciência, Oeiras, Portugal., Saraiva BM; Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal.; Instituto Gulbenkian de Ciência, Oeiras, Portugal., Squyres GR; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA., Holmes MJ; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA., Garner EC; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA., Hensel Z; Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal., Henriques R; Instituto Gulbenkian de Ciência, Oeiras, Portugal.; MRC-Laboratory for Molecular Cell Biology, University College London, London, UK., Pinho MG; Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal. mgpinho@itqb.unl.pt.
Jazyk: angličtina
Zdroj: Nature microbiology [Nat Microbiol] 2024 Apr; Vol. 9 (4), pp. 1049-1063. Date of Electronic Publication: 2024 Mar 13.
DOI: 10.1038/s41564-024-01629-6
Abstrakt: Bacterial cell division requires recruitment of peptidoglycan (PG) synthases to the division site by the tubulin homologue, FtsZ. Septal PG synthases promote septum growth. FtsZ treadmilling is proposed to drive the processive movement of septal PG synthases and septal constriction in some bacteria; however, the precise mechanisms spatio-temporally regulating PG synthase movement and activity and FtsZ treadmilling are poorly understood. Here using single-molecule imaging of division proteins in the Gram-positive pathogen Staphylococcus aureus, we showed that the septal PG synthase complex FtsW/PBP1 and its putative activator protein, DivIB, move with similar velocity around the division site. Impairing FtsZ treadmilling did not affect FtsW or DivIB velocities or septum constriction rates. Contrarily, PG synthesis inhibition decelerated or stopped directional movement of FtsW and DivIB, and septum constriction. Our findings suggest that a single population of processively moving FtsW/PBP1 associated with DivIB drives cell constriction independently of FtsZ treadmilling in S. aureus.
(© 2024. The Author(s).)
Databáze: MEDLINE