Oleanolic acid exerts bone anabolic effects via activation of osteoblastic 25-hydroxyvitamin D 1-alpha hydroxylase.
Autor: | Yu WX; Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China; Shenzhen Research Institute of The Hong Kong Polytechnic University, State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), Shenzhen, China., Poon CC; Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China; Shenzhen Research Institute of The Hong Kong Polytechnic University, State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), Shenzhen, China; Research Centre for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China., Zhou LP; Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China; Research Centre for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China; School of Optometry, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China., Wong KY; Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China; Shenzhen Research Institute of The Hong Kong Polytechnic University, State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), Shenzhen, China., Cao SS; Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China., Lam CY; Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China., Lee WY; Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Shatin, Hong Kong, China; Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China; SH Ho Scoliosis Research Laboratory, Joint Scoliosis Research Center of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Shatin, Hong Kong, China., Wong MS; Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China; Shenzhen Research Institute of The Hong Kong Polytechnic University, State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), Shenzhen, China; Research Centre for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China. Electronic address: man-sau.wong@polyu.edu.hk. |
---|---|
Jazyk: | angličtina |
Zdroj: | Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie [Biomed Pharmacother] 2024 Apr; Vol. 173, pp. 116402. Date of Electronic Publication: 2024 Mar 11. |
DOI: | 10.1016/j.biopha.2024.116402 |
Abstrakt: | Oleanolic acid (OA) is previously shown to exert bone protective effects in aged animals. However, its role in regulating osteoblastic vitamin D bioactivation, which is one of major causes of age-related bone loss, remains unclear. Our results revealed that treatment of OA significantly increased skeletal CYP27B1 expression and circulating 1,25(OH) Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. (Copyright © 2024 The Authors. Published by Elsevier Masson SAS.. All rights reserved.) |
Databáze: | MEDLINE |
Externí odkaz: |