Autor: |
Bogush I; Leibniz IFW Dresden, Institute for Emerging Electronic Technologies, Helmholtzstraße 20, 01069 Dresden, Germany.; Moldova State University, Faculty of Physics and Engineering, Str. A. Mateevici 60, 2009 Chişinău, Moldova., Fomin VM; Leibniz IFW Dresden, Institute for Emerging Electronic Technologies, Helmholtzstraße 20, 01069 Dresden, Germany.; Moldova State University, Faculty of Physics and Engineering, Str. A. Mateevici 60, 2009 Chişinău, Moldova., Dobrovolskiy OV; University of Vienna, Faculty of Physics, Nanomagnetism and Magnonics, Superconductivity and Spintronics Laboratory, Währinger Str. 17, 1090 Vienna, Austria. |
Abstrakt: |
In planar superconductor thin films, the places of nucleation and arrangements of moving vortices are determined by structural defects. However, various applications of superconductors require reconfigurable steering of fluxons, which is hard to realize with geometrically predefined vortex pinning landscapes. Here, on the basis of the time-dependent Ginzburg-Landau equation, we present an approach for the steering of vortex chains and vortex jets in superconductor nanotubes containing a slit. The idea is based on the tilting of the magnetic field B at an angle α in the plane perpendicular to the axis of a nanotube carrying an azimuthal transport current. Namely, while at α=0∘, vortices move paraxially in opposite directions within each half-tube; an increase in α displaces the areas with the close-to-maximum normal component |Bn| to the close(opposite)-to-slit regions, giving rise to descending (ascending) branches in the induced-voltage frequency spectrum fU(α). At lower B values, upon reaching the critical angle αc, the close-to-slit vortex chains disappear, yielding fU of the nf1 type (n≥1: an integer; f1: the vortex nucleation frequency). At higher B values, fU is largely blurry because of multifurcations of vortex trajectories, leading to the coexistence of a vortex jet with two vortex chains at α=90∘. In addition to prospects for the tuning of GHz-frequency spectra and the steering of vortices as information bits, our findings lay the foundation for on-demand tuning of vortex arrangements in 3D superconductor membranes in tilted magnetic fields. |