3D-printed bredigite scaffolds with ordered arrangement structures promote bone regeneration by inducing macrophage polarization in onlay grafts.
Autor: | Xuan Y; State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Department of Periodontology, School of Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, The Fourth Military Medical University, Xi'an, 710032, China., Guo Y; Department of Oral & Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, 200011, China., Li L; State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Department of Periodontology, School of Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, The Fourth Military Medical University, Xi'an, 710032, China., Yuzhang; Department of Oral and Maxillofacial Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China., Zhang C; Department of Oral & Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, 200011, China., RuiJin; State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Department of Periodontology, School of Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, The Fourth Military Medical University, Xi'an, 710032, China., Yin X; Department of Oral & Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, 200011, China. yinxuelai@sina.com., Zhang Z; Department of Oral and Maxillofacial Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China. zz_omsfdzs@163.com.; Department of Oral & Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, 200011, China. zz_omsfdzs@163.com. |
---|---|
Jazyk: | angličtina |
Zdroj: | Journal of nanobiotechnology [J Nanobiotechnology] 2024 Mar 11; Vol. 22 (1), pp. 102. Date of Electronic Publication: 2024 Mar 11. |
DOI: | 10.1186/s12951-024-02362-2 |
Abstrakt: | Bone tissue engineering scaffolds may provide a potential strategy for onlay bone grafts for oral implants. For determining the fate of scaffold biomaterials and osteogenesis effects, the host immune response is crucial. In the present study, bredigite (BRT) bioceramic scaffolds with an ordered arrangement structure (BRT-O) and a random morphology (BRT-R) were fabricated. The physicochemical properties of scaffolds were first characterized by scanning electron microscopy, mechanical test and micro-Fourier transform infrared spectroscopy. In addition, their osteogenic and immunomodulatory properties in an onlay grafting model were investigated. In vitro, the BRT-O scaffolds facilitated the macrophage polarization towards a pro-regenerative M2 phenotype, which subsequently facilitated the migration and osteogenic differentiation of bone marrow-derived mesenchymal stem cells. In vivo, an onlay grafting model was successfully established in the cranium of rabbits. In addition, the BRT-O scaffolds grafted on rabbit cranium promoted bone regeneration and CD68 + CD206 + M2 macrophage polarization. In conclusion, the 3D-printed BRT-O scaffold presents as a promising scaffold biomaterial for onlay grafts by regulating the local immune microenvironment. (© 2024. The Author(s).) |
Databáze: | MEDLINE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |