Artificial neural networks reconstruct missing perikymata in worn teeth.

Autor: Modesto-Mata M; Centro Nacional de Investigación sobre la Evolución Humana (CENIEH), Burgos, Spain.; Universidad Internacional de La Rioja (UNIR), Logroño (La Rioja), Spain., de la Fuente Valentín L; Universidad Internacional de La Rioja (UNIR), Logroño (La Rioja), Spain., Hlusko LJ; Centro Nacional de Investigación sobre la Evolución Humana (CENIEH), Burgos, Spain., Martínez de Pinillos M; Centro Nacional de Investigación sobre la Evolución Humana (CENIEH), Burgos, Spain.; Laboratorio de Evolución Humana (LEH), Universidad de Burgos, Burgos, Spain., Towle I; Centro Nacional de Investigación sobre la Evolución Humana (CENIEH), Burgos, Spain., García-Campos C; Centro Nacional de Investigación sobre la Evolución Humana (CENIEH), Burgos, Spain.; Facultad de Ciencias, Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, Madrid, Spain., Martinón-Torres M; Centro Nacional de Investigación sobre la Evolución Humana (CENIEH), Burgos, Spain.; Department of Anthropology, University College London, London, UK., Bermúdez de Castro JM; Centro Nacional de Investigación sobre la Evolución Humana (CENIEH), Burgos, Spain.; Department of Anthropology, University College London, London, UK.
Jazyk: angličtina
Zdroj: Anatomical record (Hoboken, N.J. : 2007) [Anat Rec (Hoboken)] 2024 Sep; Vol. 307 (9), pp. 3120-3138. Date of Electronic Publication: 2024 Mar 11.
DOI: 10.1002/ar.25416
Abstrakt: Dental evolutionary studies in hominins are key to understanding how our ancestors and close fossil relatives grew from the early stages of embryogenesis into adults. In a sense, teeth are like an airplane's 'black box' as they record important variables for assessing developmental timing, enabling comparisons within and between populations, species, and genera. The ability to discern this type of nuanced information is embedded in the nature of how tooth enamel and dentin form: incrementally and over years. This incremental growth leaves chronological indicators in the histological structure of enamel, visible on the crown surface as perikymata. These structures are used in the process of reconstructing the rate and timing of tooth formation. Unfortunately, the developmentally earliest growth lines in lateral enamel are quickly lost to wear once the tooth crown erupts. We developed a method to reconstruct these earliest, missing perilymata from worn teeth through knowledge of the later-developed, visible perikymata for all tooth types (incisors, canines, premolars, and molars) using a modern human dataset. Building on our previous research using polynomial regressions, here we describe an artificial neural networks (ANN) method. This new ANN method mostly predicts within 2 counts the number of perikymata present in each of the first three deciles of the crown height for all tooth types. Our ANN method for estimating perikymata lost through wear has two immediate benefits: more accurate values can be produced and worn teeth can be included in dental research. This tool is available on the open-source platform R within the package teethR released under GPL v3.0 license, enabling other researchers the opportunity to expand their datasets for studies of periodicity in histological growth, dental development, and evolution.
(© 2024 American Association for Anatomy.)
Databáze: MEDLINE