Three-dimensional magnetic nanotextures with high-order vorticity in soft magnetic wireframes.
Autor: | Volkov OM; Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Ion Beam Physics and Materials Research, Bautzner Landstr. 400, 01328, Dresden, Germany. o.volkov@hzdr.de., Pylypovskyi OV; Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Ion Beam Physics and Materials Research, Bautzner Landstr. 400, 01328, Dresden, Germany. o.pylypovskyi@hzdr.de.; Kyiv Academic University, 03142, Kyiv, Ukraine. o.pylypovskyi@hzdr.de., Porrati F; Physikalisches Institut, Johann Wolfgang Goethe-Universität Frankfurt am Main, Max-von-Laue-Str. 1, 60438, Frankfurt am Main, Germany. porrati@physik.uni-frankfurt.de., Kronast F; Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489, Berlin, Germany., Fernandez-Roldan JA; Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Ion Beam Physics and Materials Research, Bautzner Landstr. 400, 01328, Dresden, Germany., Kákay A; Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Ion Beam Physics and Materials Research, Bautzner Landstr. 400, 01328, Dresden, Germany., Kuprava A; Physikalisches Institut, Johann Wolfgang Goethe-Universität Frankfurt am Main, Max-von-Laue-Str. 1, 60438, Frankfurt am Main, Germany., Barth S; Physikalisches Institut, Johann Wolfgang Goethe-Universität Frankfurt am Main, Max-von-Laue-Str. 1, 60438, Frankfurt am Main, Germany., Rybakov FN; Department of Physics and Astronomy, Uppsala University, Box-516, Uppsala, SE-751 20, Sweden., Eriksson O; Department of Physics and Astronomy, Uppsala University, Box-516, Uppsala, SE-751 20, Sweden.; Wallenberg Initiative Materials Science for Sustainability, Uppsala University, 75121, Uppsala, Sweden., Lamb-Camarena S; University of Vienna, Faculty of Physics, Nanomagnetism and Magnonics, Superconductivity and Spintronics Laboratory, Währinger Str. 17, 1090, Vienna, Austria.; University of Vienna, Vienna Doctoral School in Physics, Boltzmanngasse 5, A-1090, Vienna, Austria., Makushko P; Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Ion Beam Physics and Materials Research, Bautzner Landstr. 400, 01328, Dresden, Germany., Mawass MA; Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489, Berlin, Germany.; Department of Interface Science, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4 - 6, 14195, Berlin, Germany., Shakeel S; Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Ion Beam Physics and Materials Research, Bautzner Landstr. 400, 01328, Dresden, Germany., Dobrovolskiy OV; University of Vienna, Faculty of Physics, Nanomagnetism and Magnonics, Superconductivity and Spintronics Laboratory, Währinger Str. 17, 1090, Vienna, Austria., Huth M; Physikalisches Institut, Johann Wolfgang Goethe-Universität Frankfurt am Main, Max-von-Laue-Str. 1, 60438, Frankfurt am Main, Germany., Makarov D; Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Ion Beam Physics and Materials Research, Bautzner Landstr. 400, 01328, Dresden, Germany. d.makarov@hzdr.de. |
---|---|
Jazyk: | angličtina |
Zdroj: | Nature communications [Nat Commun] 2024 Mar 11; Vol. 15 (1), pp. 2193. Date of Electronic Publication: 2024 Mar 11. |
DOI: | 10.1038/s41467-024-46403-8 |
Abstrakt: | Additive nanotechnology enable curvilinear and three-dimensional (3D) magnetic architectures with tunable topology and functionalities surpassing their planar counterparts. Here, we experimentally reveal that 3D soft magnetic wireframe structures resemble compact manifolds and accommodate magnetic textures of high order vorticity determined by the Euler characteristic, χ. We demonstrate that self-standing magnetic tetrapods (homeomorphic to a sphere; χ = + 2) support six surface topological solitons, namely four vortices and two antivortices, with a total vorticity of + 2 equal to its Euler characteristic. Alternatively, wireframe structures with one loop (homeomorphic to a torus; χ = 0) possess equal number of vortices and antivortices, which is relevant for spin-wave splitters and 3D magnonics. Subsequent introduction of n holes into the wireframe geometry (homeomorphic to an n-torus; χ < 0) enables the accommodation of a virtually unlimited number of antivortices, which suggests their usefulness for non-conventional (e.g., reservoir) computation. Furthermore, complex stray-field topologies around these objects are of interest for superconducting electronics, particle trapping and biomedical applications. (© 2024. The Author(s).) |
Databáze: | MEDLINE |
Externí odkaz: |