Unlocking the plant growth-promoting potential of yeast spp.: exploring species from the Moroccan extremophilic environment for enhanced plant growth and sustainable farming.

Autor: Raklami A; AgroBiosciences Program, College of Sustainable Agriculture and Environmental Sciences (CAES), Mohammed VI Polytechnic University (UM6P), Lot 660, Hay Moulay Rachid, Benguerir 43150, Morocco., Babalola OO; Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa., Jemo M; AgroBiosciences Program, College of Sustainable Agriculture and Environmental Sciences (CAES), Mohammed VI Polytechnic University (UM6P), Lot 660, Hay Moulay Rachid, Benguerir 43150, Morocco., Nafis A; Microbiology and Antimicrobial Agents Team, Laboratory of Plant Biotechnology, Ecology and Valorization of Ecosystems (LB2VE/URL-CNRST n°10), Faculty of Sciences, Chouaïb Doukkali University, El Jadida 24000, Morocco.
Jazyk: angličtina
Zdroj: FEMS microbiology letters [FEMS Microbiol Lett] 2024 Jan 09; Vol. 371.
DOI: 10.1093/femsle/fnae015
Abstrakt: In this study, we successfully isolated two distinct yeasts from Moroccan extreme environments. These yeasts were subjected to molecular characterization by analyzing their Internal Transcribed spacer (ITS) regions. Our research thoroughly characterizes plant growth-promoting abilities and their drought and salt stress tolerance. In a greenhouse assay, we examined the impact of selected yeasts on Medicago sativa's growth. Four treatments were employed: (i) control without inoculation (NI), (ii) inoculation with L1, (iii) inoculation with L2, and (iv) inoculation with the mixture L1 + L2. L1 isolated from Toubkal Mountain shared 99.83% sequence similarity to Rhodotorula mucilaginosa. Meanwhile, L2, thriving in the arid Merzouga desert, displayed a similar identity to Naganishia albida (99.84%). Yeast strains were tolerant to NaCl (2 M) and 60% PEG (polyethylene glycol P6000) in case of drought. Both strains could solubilize phsphorus, with L2 additionally demonstrating potassium solubilization. In addition, both strains produce indole acetic acid (up to 135 µl ml-1), have siderophore ability, and produce aminocyclopropane-1-carboxylic acid deaminase. Isolates L1 and L2, and their consortium showed that the single or combined strain inoculation of M. sativa improved plant growth, development, and nutrient assimilation. These findings pave the way for harnessing yeast-based solutions in agricultural practices, contributing to enhanced crop productivity and environmental sustainability.
(© The Author(s) 2024. Published by Oxford University Press on behalf of FEMS.)
Databáze: MEDLINE