Co-spray dried inhalable composite powders of ciprofloxacin and alginate oligosaccharide as anti-biofilm therapy.

Autor: Zhang L; Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road, No. 103, 110016 Shenyang, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, China; Lanzhou Institute of Biological Products Co., Ltd, Lanzhou, China., Bera H; Dr. B.C. Roy College of Pharmacy & Allied Health Sciences, Durgapur, India., Guo Y; Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road, No. 103, 110016 Shenyang, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, China; Taiyuan Health School, Taiyuan, China., Shi C; Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road, No. 103, 110016 Shenyang, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, China., Ulrik Lind J; Department of Health Technology (DTU Health Tech), Technical University of Denmark, Lyngby, Denmark., Radeke C; Department of Health Technology (DTU Health Tech), Technical University of Denmark, Lyngby, Denmark., Wang J; Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark., Wang H; Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet, Henrik Harpestrengsvej 4A, DK-2100 Copenhagen, Denmark; Department of Immunology and Microbiology, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark., Zhao X; Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China., Cun D; Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road, No. 103, 110016 Shenyang, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, China. Electronic address: cundongmei@163.com., Yang M; Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road, No. 103, 110016 Shenyang, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, China; Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark. Electronic address: mingshi.yang@sund.ku.dk.
Jazyk: angličtina
Zdroj: International journal of pharmaceutics [Int J Pharm] 2024 Apr 10; Vol. 654, pp. 123949. Date of Electronic Publication: 2024 Feb 27.
DOI: 10.1016/j.ijpharm.2024.123949
Abstrakt: The treatment of chronic respiratory infections caused by biofilm formation are extremely challenging owing to poor drug penetration into the complex biofilm structure and high drug resistance. Local delivery of an antibiotic together with a non-antibiotic adjuvant to the lungs could often enhance the therapeutic responses by targeting different bacterial growth pathways and minimizing drug resistance. In this study, we designed new inhalable dry powders containing ciprofloxacin (CIP) and OligoG (Oli, a low-molecular-weight alginate oligosaccharide impairing the mucoid biofilms by interacting with their cationic ions) to combat respiratory bacterial biofilm infections. The resulting powders were characterized with respect to their morphology, solid-state property, surface chemistry, moisture sorption behavior, and dissolution rate. The aerosol performance and storage stability of the dry powders were also evaluated. The results showed that inhalable dry powders composed of CIP and Oli could be readily accomplished via the wet milling and spray drying process. Upon the storage under 20 ± 2 °C/20 ± 2 % relative humidity (RH) for one month, there was no significant change in the in vitro aerosol performances of the dry powders. In contrast, the dry powders became non-inhalable following the storage at 20 ± 2 °C/53 ± 2 % RH for one month due to the hygroscopic nature of Oli, which could be largely prevented by incorporation of leucine. Collectively, this study suggests that the newly developed co-spray-dried powders composed of CIP and Oli might represent a promising and alternative treatment strategy against respiratory bacterial biofilm infections.
Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
(Copyright © 2024. Published by Elsevier B.V.)
Databáze: MEDLINE