Mapping of uranium particles on J-type swipes with microextraction-ICP-MS.

Autor: Bradley VC; Chemical Sciences Division, Oak Ridge National Laboratory, USA. manardbt@ornl.gov., Burleson J; Chemical Sciences Division, Oak Ridge National Laboratory, USA. manardbt@ornl.gov., Andrews HB; Radioisotope Science and Technology Division, Oak Ridge National Laboratory, USA., Thompson CV; Chemical Sciences Division, Oak Ridge National Laboratory, USA. manardbt@ornl.gov., Spano TL; Nuclear Nonproliferation Division, Oak Ridge National Laboratory, USA., Dunlap DR; Chemical Sciences Division, Oak Ridge National Laboratory, USA. manardbt@ornl.gov., Zirakparvar NA; Chemical Sciences Division, Oak Ridge National Laboratory, USA. manardbt@ornl.gov., Ticknor BW; Chemical Sciences Division, Oak Ridge National Laboratory, USA. manardbt@ornl.gov., Hexel CR; Chemical Sciences Division, Oak Ridge National Laboratory, USA. manardbt@ornl.gov., Manard BT; Chemical Sciences Division, Oak Ridge National Laboratory, USA. manardbt@ornl.gov.
Jazyk: angličtina
Zdroj: The Analyst [Analyst] 2024 Apr 15; Vol. 149 (8), pp. 2244-2251. Date of Electronic Publication: 2024 Apr 15.
DOI: 10.1039/d3an02101g
Abstrakt: A microextraction liquid sampling system coupled to a quadrupole inductively coupled plasma-mass spectrometer (ICP-MS) was utilized to spatially discern uranium particles, isotopically, on a cellulose-based swipe material ( i.e. , J-type swipe). These types of swipes are often used by the International Atomic Energy Agency (IAEA) as part of their environmental sampling program. A grid was created such that extraction locations covered the center circle ( n = 34 without overlapping). Uranium (U) particulates (<20 μm) of varying U isotopic abundance and chemical form ( i.e. , uranyl fluoride and uranyl nitrate hexahydrate) were mechanically placed on the swipes in random locations and detected via the microextraction-ICP-MS methodology. Heat maps were subsequently generated to show the placement of the particulate with their respective intensity and isotopic determination. This detection of the uranium particulates, via isotopic determination, agreed with reference values for these materials. Additionally, depleted ( 235 U/ 238 U = 0.002) uranium particulates were placed directly within a clay matrix, on the swipe surface, and subjected to analysis by microextraction-ICP-MS. The mapping of the swipe demonstrated, for the first time, the employment of the microextraction-ICP-MS method for extracting sample from a complex matrix, and correctly identifying the uranium isotopic composition. This example ultimately demonstrates the utility of the methodology for detecting particles of interest in complex matrices.
Databáze: MEDLINE