Accuracy and Feasibility of Real-time Continuous Glucose Monitoring in Critically Ill Patients After Abdominal Surgery and Solid Organ Transplantation.
Autor: | Voglová Hagerf B; Department of Diabetes, Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic.; First Faculty of Medicine, Charles University, Prague, Czech Republic., Protus M; First Faculty of Medicine, Charles University, Prague, Czech Republic.; Department of Anesthesiology, Resuscitation and Intensive Care, Institute for Clinical and Experimental Medicine, Prague, Czech Republic., Nemetova L; Department of Diabetes, Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic., Mraz M; Department of Diabetes, Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic.; First Faculty of Medicine, Charles University, Prague, Czech Republic., Kieslichova E; First Faculty of Medicine, Charles University, Prague, Czech Republic.; Department of Anesthesiology, Resuscitation and Intensive Care, Institute for Clinical and Experimental Medicine, Prague, Czech Republic., Uchytilova E; First Faculty of Medicine, Charles University, Prague, Czech Republic.; Department of Anesthesiology, Resuscitation and Intensive Care, Institute for Clinical and Experimental Medicine, Prague, Czech Republic., Indrova V; Department of Anesthesiology, Resuscitation and Intensive Care, Institute for Clinical and Experimental Medicine, Prague, Czech Republic., Lelito J; Department of Anesthesiology, Resuscitation and Intensive Care, Institute for Clinical and Experimental Medicine, Prague, Czech Republic., Girman P; Department of Diabetes, Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic., Haluzík M; Department of Diabetes, Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic.; First Faculty of Medicine, Charles University, Prague, Czech Republic., Franekova J; Department of Laboratory Methods, Institute for Clinical and Experimental Medicine, Prague, Czech Republic.; Third Faculty of Medicine, Charles University, Prague, Czech Republic., Svirlochova V; Department of Laboratory Methods, Institute for Clinical and Experimental Medicine, Prague, Czech Republic., Klonoff DC; Diabetes Research Institute, Mills-Peninsula Medical Center, San Mateo, CA., Kohn MA; University of California San Francisco, San Francisco, CA., Jabor A; Department of Laboratory Methods, Institute for Clinical and Experimental Medicine, Prague, Czech Republic.; Third Faculty of Medicine, Charles University, Prague, Czech Republic. |
---|---|
Jazyk: | angličtina |
Zdroj: | Diabetes care [Diabetes Care] 2024 Jun 01; Vol. 47 (6), pp. 956-963. |
DOI: | 10.2337/dc23-1663 |
Abstrakt: | Objective: Glycemia management in critical care is posing a challenge in frequent measuring and adequate insulin dose adjustment. In recent years, continuous glucose measurement has gained accuracy and reliability in outpatient and inpatient settings. The aim of this study was to assess the feasibility and accuracy of real-time continuous glucose monitoring (CGM) in ICU patients after major abdominal surgery. Research Design and Methods: We included patients undergoing pancreatic surgery and solid organ transplantation (liver, pancreas, islets of Langerhans, kidney) requiring an ICU stay after surgery. We used a Dexcom G6 sensor, placed in the infraclavicular region, for real-time CGM. Arterial blood glucose measured by the amperometric principle (ABL 800; Radiometer, Copenhagen, Denmark) served as a reference value and for calibration. Blood glucose was also routinely monitored by a StatStrip bedside glucose meter. Sensor accuracy was assessed by mean absolute relative difference (MARD), bias, modified Bland-Altman plot, and surveillance error grid for paired samples of glucose values from CGM and acid-base analyzer (ABL). Results: We analyzed data from 61 patients and obtained 1,546 paired glucose values from CGM and ABL. Active sensor use was 95.1%. MARD was 9.4%, relative bias was 1.4%, and 92.8% of values fell in zone A, 6.1% fell in zone B, and 1.2% fell in zone C of the surveillance error grid. Median time in range was 78%, with minimum (<1%) time spent in hypoglycemia. StatStrip glucose meter MARD compared with ABL was 5.8%. Conclusions: Our study shows clinically applicable accuracy and reliability of Dexcom G6 CGM in postoperative ICU patients and a feasible alternative sensor placement site. (© 2024 by the American Diabetes Association.) |
Databáze: | MEDLINE |
Externí odkaz: |