Development of Cilofexor, an intestinally-biased Farnesoid X Receptor agonist, for the treatment of fatty liver disease.

Autor: Hollenback D; Gilead Sciences, Inc, United States., Hambruch E; Biology, Phenex Pharmceuticals, Germany., Fink G; Biology, Phenex Pharmceuticals, Germany., Birkel M; Biology, Phenex Pharmceuticals, Germany., Schulz A; Biology, Phenex Pharmceuticals, Germany., Hornberger M; Biology, Phenex Pharmceuticals, Germany., Liu K; Biology, Gilead Sciences, Inc, United States., Staiger KM; Drug Metabolism and Pharmacokinetics, Gilead Sciences, United States., Krol HD; Biology, Phenex Pharmceuticals, Germany., Deuschle U; Biology, Phenex Pharmceuticals, Germany., Steeneck C; Biology, Phenex Pharmceuticals, Germany., Kinzel O; Biology, Phenex Pharmceuticals, Germany., Liles JT; Biology, Gilead Sciences, Inc, United States., Budas G; Biology, Gilead Sciences, Inc, United States., Watkins WJ; Biology, Gilead Sciences, Inc, United States., Kremoser C; Biology, Phenex Pharmceuticals, Germany cm.kremoser@wm-therapeutics.com.
Jazyk: angličtina
Zdroj: The Journal of pharmacology and experimental therapeutics [J Pharmacol Exp Ther] 2024 Feb 26. Date of Electronic Publication: 2024 Feb 26.
DOI: 10.1124/jpet.123.001900
Abstrakt: The farnesoid X receptor (FXR) is a nuclear receptor that controls bile acid, lipid, and cholesterol metabolism. FXR-targeted drugs have shown promise in late-stage clinical trials for non-alcoholic steatohepatitis. Herein, we used clinical results from our first non-steroidal FXR agonist, Px-102 (4-[2-[2-chloro-4-[[5-cyclopropyl-3-(2,6-dichlorophenyl)-4-isoxazolyl]methoxy]phenyl]cyclopropyl] benzoic acid), to develop cilofexor, a potent, non-steroidal FXR agonist with a more manageable safety profile. Px-102 demonstrated the anticipated pharmacodynamic (PD) effects in healthy volunteers but caused a 2-fold increase in alanine aminotransferase (ALT) activity and changes in cholesterol levels. These data guided development of a high fat diet mouse model to screen FXR agonists based on ALT and cholesterol changes. Cilofexor was identified to elicit only minor changes in these parameters. The differing effects of cilofexor and Px-102 on ALT/cholesterol in the model could not be explained by potency or specificity, and we hypothesized that the relative contribution of intestinal and liver FXR activation may be responsible. Gene expression analysis from rodent studies revealed that cilofexor, but not Px-102, had a bias for FXR transcriptional activity in the intestine compared to the liver. Fluorescent imaging in hepatoma cells demonstrated similar subcellular localization for cilofexor and Px-102, but cilofexor was more rapidly washed out, consistent with a lower membrane residence time contributing to reduced hepatic transcriptional effects. Cilofexor demonstrated antisteatotic and antifibrotic efficacy in rodent models and antisteatotic efficacy in a monkey model, with the anticipated PD and a manageable safety profile in human phase I studies. Significance Statement FXR (farnesoid X receptor) agonists have shown promise in treating non-alcoholic steatohepatitis and other liver diseases in the clinic, but balancing efficacy with undesired side effects has been difficult. Here, we examined the preclinical and clinical effects of the first-generation FXR agonist, Px-102 (4-[2-[2-chloro-4-[[5-cyclopropyl-3-(2,6-dichlorophenyl)-4-isoxazolyl]methoxy]phenyl]cyclopropyl] benzoic acid), to enable the selection of an analog, cilofexor, with unique properties that reduced side effects yet maintained efficacy. Cilofexor is one of few remaining FXR agonists in clinical development.
Databáze: MEDLINE