EEG alpha and theta time-frequency structure during a written mathematical task.
Autor: | Bonança GM; Department of Biophysics and Pharmacology, Institute of Biosciences of Botucatu - Universidade Estadual Paulista, Distrito de Rubião Junior S/N, Botucatu, 18618-970, SP, Brazil., Gerhardt GJL; Department of Physics and Chemistry, Universidade de Caxias do Sul, Francisco Getulio Vargas, 1130, Caxias do Sul, 95001-970, RS, Brazil., Molan AL; Department of Biophysics and Pharmacology, Institute of Biosciences of Botucatu - Universidade Estadual Paulista, Distrito de Rubião Junior S/N, Botucatu, 18618-970, SP, Brazil., Oliveira LMA; Department of Biophysics and Pharmacology, Institute of Biosciences of Botucatu - Universidade Estadual Paulista, Distrito de Rubião Junior S/N, Botucatu, 18618-970, SP, Brazil., Jarola GM; Department of Biophysics and Pharmacology, Institute of Biosciences of Botucatu - Universidade Estadual Paulista, Distrito de Rubião Junior S/N, Botucatu, 18618-970, SP, Brazil., Schönwald SV; Clinical Neurophysiology Unit, Department of Neurology, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos 2350/2040, Porto Alegre, 90035-003, RS, Brazil., Rybarczyk-Filho JL; Department of Biophysics and Pharmacology, Institute of Biosciences of Botucatu - Universidade Estadual Paulista, Distrito de Rubião Junior S/N, Botucatu, 18618-970, SP, Brazil. jose.luiz@unesp.br. |
---|---|
Jazyk: | angličtina |
Zdroj: | Medical & biological engineering & computing [Med Biol Eng Comput] 2024 Jun; Vol. 62 (6), pp. 1869-1885. Date of Electronic Publication: 2024 Feb 25. |
DOI: | 10.1007/s11517-024-03028-9 |
Abstrakt: | Since the first electroencephalogram (EEG) was obtained, there have been many possibilities to use it as a tool to access brain cognitive dynamics. Mathematical (Math) problem solving is one of the most important cortical processes, but it is still far from being well understood. EEG is an inexpensive and simple indirect measure of brain operation, but only recently has low-cost equipment (mobile EEG) allowed sophisticated analyses in non-clinical settings. The main purpose of this work is to study EEG activation during a Math task in a realistic environment, using mobile EEG. A matching pursuit (MP)-based signal analysis technique was employed, since MP properties render it a priori suitable to study induced EEG activity over long time sequences, when it is not tightly locked to a given stimulus. The study sample comprised sixty healthy volunteers. Unlike the majority of previous studies, subjects were studied in a sitting position with their eyes open. They completed a written Math task outside the EEG lab, wearing a mobile EEG device (EPOC+). Theta [4 Hz-7.5 Hz], alpha (7.5 Hz-13 Hz] and 0.5 Hz micro-bands in the [0.5 Hz-20 Hz] range were studied with a low-density stochastic MP dictionary. Over 1-min windows, ongoing EEG alpha and theta activity was decomposed into numerous MP atoms with median duration around 3 s, similar to the duration of induced, time-locked activity obtained with event-related (des)synchronization (ERS/ERD) studies. Relative to Rest, there was lower right-side and posterior MP alpha atom/min during Math, whereas MP theta atom/min was significantly higher on anteriorly located electrodes, especially on the left side. MP alpha findings were particularly significant on a narrow range around 10 Hz-10.5 Hz, consistent with FFT alpha peak findings from ERS/ERD studies. With a streamlined protocol, these results replicate previous findings of EEG alpha and theta activation obtained during Math tasks with different signal analysis techniques and in different time frames. The efficient application to real-world, noisy EEG data with a low-resolution stochastic MP dictionary shows that this technique is very encouraging. These results provide support for studies of mathematical cognition with mobile EEG and matching pursuit. (© 2024. International Federation for Medical and Biological Engineering.) |
Databáze: | MEDLINE |
Externí odkaz: |