Mancha3D Code: Multipurpose Advanced Nonideal MHD Code for High-Resolution Simulations in Astrophysics.

Autor: Modestov M; Instituto de Astrofísica de Canarias, 38205 La Laguna, Tenerife Spain.; Dpto. de Astrofísica, Universidad de La Laguna, 38205 La Laguna, Tenerife Spain., Khomenko E; Instituto de Astrofísica de Canarias, 38205 La Laguna, Tenerife Spain.; Dpto. de Astrofísica, Universidad de La Laguna, 38205 La Laguna, Tenerife Spain., Vitas N; Instituto de Astrofísica de Canarias, 38205 La Laguna, Tenerife Spain.; Dpto. de Astrofísica, Universidad de La Laguna, 38205 La Laguna, Tenerife Spain., de Vicente A; Instituto de Astrofísica de Canarias, 38205 La Laguna, Tenerife Spain.; Dpto. de Astrofísica, Universidad de La Laguna, 38205 La Laguna, Tenerife Spain., Navarro A; Instituto de Astrofísica de Canarias, 38205 La Laguna, Tenerife Spain.; Dpto. de Astrofísica, Universidad de La Laguna, 38205 La Laguna, Tenerife Spain., González-Morales PA; Instituto de Astrofísica de Canarias, 38205 La Laguna, Tenerife Spain.; Dpto. de Astrofísica, Universidad de La Laguna, 38205 La Laguna, Tenerife Spain., Collados M; Instituto de Astrofísica de Canarias, 38205 La Laguna, Tenerife Spain.; Dpto. de Astrofísica, Universidad de La Laguna, 38205 La Laguna, Tenerife Spain., Felipe T; Instituto de Astrofísica de Canarias, 38205 La Laguna, Tenerife Spain.; Dpto. de Astrofísica, Universidad de La Laguna, 38205 La Laguna, Tenerife Spain., Martínez-Gómez D; Instituto de Astrofísica de Canarias, 38205 La Laguna, Tenerife Spain.; Dpto. de Astrofísica, Universidad de La Laguna, 38205 La Laguna, Tenerife Spain., Hunana P; Instituto de Astrofísica de Canarias, 38205 La Laguna, Tenerife Spain.; Dpto. de Astrofísica, Universidad de La Laguna, 38205 La Laguna, Tenerife Spain., Luna M; Departament de Física, Universitat de les Illes Balears, E-07122 Palma, Spain.; Institute of Applied Computing and Community Code (IAC3), UIB, Palma, Spain., Koll Pistarini M; Instituto de Astrofísica de Canarias, 38205 La Laguna, Tenerife Spain.; Dpto. de Astrofísica, Universidad de La Laguna, 38205 La Laguna, Tenerife Spain., Popescu Braileanu B; Centre for Mathematical Plasma Astrophysics, KU Leuven, 3001 Leuven, Belgium., Perdomo García A; Instituto de Astrofísica de Canarias, 38205 La Laguna, Tenerife Spain.; Dpto. de Astrofísica, Universidad de La Laguna, 38205 La Laguna, Tenerife Spain., Liakh V; Centre for Mathematical Plasma Astrophysics, KU Leuven, 3001 Leuven, Belgium., Santamaria I; Instituto de Astrofísica de Canarias, 38205 La Laguna, Tenerife Spain.; Dpto. de Astrofísica, Universidad de La Laguna, 38205 La Laguna, Tenerife Spain., Gomez Miguez MM; Instituto de Astrofísica de Canarias, 38205 La Laguna, Tenerife Spain.; Dpto. de Astrofísica, Universidad de La Laguna, 38205 La Laguna, Tenerife Spain.
Jazyk: angličtina
Zdroj: Solar physics [Sol Phys] 2024; Vol. 299 (2), pp. 23. Date of Electronic Publication: 2024 Feb 20.
DOI: 10.1007/s11207-024-02267-1
Abstrakt: The Mancha3D code is a versatile tool for numerical simulations of magnetohydrodynamic (MHD) processes in solar/stellar atmospheres. The code includes nonideal physics derived from plasma partial ionization, a realistic equation of state and radiative transfer, which allows performing high-quality realistic simulations of magnetoconvection, as well as idealized simulations of particular processes, such as wave propagation, instabilities or energetic events. The paper summarizes the equations and methods used in the Mancha3D (Multifluid (-purpose -physics -dimensional) Advanced Non-ideal MHD Code for High resolution simulations in Astrophysics 3D) code. It also describes its numerical stability and parallel performance and efficiency. The code is based on a finite difference discretization and a memory-saving Runge-Kutta (RK) scheme. It handles nonideal effects through super-time-stepping and Hall diffusion schemes, and takes into account thermal conduction by solving an additional hyperbolic equation for the heat flux. The code is easily configurable to perform different kinds of simulations. Several examples of the code usage are given. It is demonstrated that splitting variables into equilibrium and perturbation parts is essential for simulations of wave propagation in a static background. A perfectly matched layer (PML) boundary condition built into the code greatly facilitates a nonreflective open boundary implementation. Spatial filtering is an important numerical remedy to eliminate grid-size perturbations enhancing the code stability. Parallel performance analysis reveals that the code is strongly memory bound, which is a natural consequence of the numerical techniques used, such as split variables and PML boundary conditions. Both strong and weak scalings show adequate performance up to several thousands of processors (CPUs).
Competing Interests: Competing interestsThe authors declare no competing interests.
(© The Author(s) 2024.)
Databáze: MEDLINE